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ABSTRACT

Given a dynamic graph stream, how can we detect the sudden
appearance of anomalous patterns, such as link spam, follower
boosting, or denial of service attacks? Additionally, can we catego-
rize the types of anomalies that occur in practice, and theoretically
analyze the anomalous signs arising from each type?

In this work, we propose AnomRank, an online algorithm for
anomaly detection in dynamic graphs. AnomRank uses a two-
pronged approach defining two novel metrics for anomalousness.
Eachmetric tracks the derivatives of its own version of a ‘node score’
(or node importance) function. This allows us to detect sudden
changes in the importance of any node. We show theoretically and
experimentally that the two-pronged approach successfully detects
two common types of anomalies: sudden weight changes along
an edge, and sudden structural changes to the graph. AnomRank
is (a) Fast and Accurate: up to 49.5× faster or 35% more accurate
than state-of-the-art methods, (b) Scalable: linear in the number
of edges in the input graph, processing millions of edges within 2
seconds on a stock laptop/desktop, and (c) Theoretically Sound:

providing theoretical guarantees of the two-pronged approach.
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1 INTRODUCTION

Network-based systems including computer networks and social
network services have been a focus of various attacks. In computer
networks, distributed denial of service (DDOS) attacks use a number
of machines to make connections to a target machine to block their
availability. In social networks, users pay spammers to "Like" or
"Follow" their page to manipulate their public trust. By abstracting
those networks to a graph, we can detect those attacks by finding
suddenly emerging anomalous signs in the graph.
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Various approaches have been proposed to detect anomalies in
graphs, the majority of which focus on static graphs [3, 6, 11–13,
20, 24]. However, many real-world graphs are dynamic, with times-
tamps indicating the time when each edge was inserted/deleted.
Static anomaly detection methods, which are solely based on static
connections, miss useful temporal signals of anomalies.

Several approaches [8, 9, 22] have been proposed to detect anom-
alies on dynamic graphs (we review these in greater detail in Section
2 and Table 1). However, they are not satisfactory in terms of accu-
racy and speed. Accurately detecting anomalies in near real-time
is important in order to cut back the impact of malicious activities
and start recovery processes in a timely manner.

In this paper, we propose AnomRank, a fast and accurate on-
line algorithm for detecting anomalies in dynamic graphs with a
two-pronged approach. We classify anomalies in dynamic graphs
into two types: AnomalyS and AnomalyW. AnomalyS denotes
suspicious changes to the structure of the graph, such as through
the addition of edges between previously unrelated nodes in spam
attacks. AnomalyW indicates anomalous changes in the weight (i.e.
number of edges) between connected nodes, such as suspiciously
frequent connections in port scan attacks.

Various node score functions have been proposed to map each
node of a graph to an importance score: PageRank [17], HITS and
its derivatives (SALSA) [13, 15], Fiedler vector [7], etc. Our intuition
is that anomalies induce sudden changes in node scores. Based on
this intuition, AnomRank focuses on the 1st and 2nd order deriva-
tives of node scores to detect anomalies with large changes in node
scores within a short time. To detect AnomalyS and AnomalyW
effectively, we design two versions of node score functions based
on characteristics of these two types of anomalies. Then, we define
two novel metrics, AnomRankS and AnomRankW, which mea-
sure the 1st and 2nd order derivatives of our two versions of node
score functions, as a barometer of anomalousness. We theoreti-
cally analyze the effectiveness of each metric on the corresponding
anomaly type, and provide rigid guarantees on the accuracy of
AnomRank. Through extensive experiments with real-world and
synthetic graphs, we demonstrate the superior performance of
AnomRank over existing methods. Our main contributions are:

• Online, two-pronged approach:We introduce AnomRank, an
online detection method, for two types of anomalies (AnomalyS,
AnomalyW) in dynamic graphs.
• Theoretical guarantees:We prove the effectiveness of our pro-
posed metrics, AnomRankS and AnomRankW, theoretically
(Theorems 1 and 2).
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Figure 1: AnomRank is accurate, fast, and scalable: (a) Precision at top-100 and running time on the DARPA dataset: AnomRank is signif-

icantly faster than state-of-the-art methods while achieving higher accuracy. (b) AnomRank scales linearly with the number of edges in

the input dynamic graph. (c) AnomRank computes anomaly scores (green line) on the DARPA dataset. Red crosses indicate ground truth

anomalies; the blue line is an anomalousness threshold. 77% of green spikes above the blue line are true positives; see Section 5 for details.

• Practicality: Experiments on public benchmarks show that
AnomRank outperforms state-of-the-art competitors, being up
to 49.5× faster or 35% more accurate (Figure 1). Moreover, thanks
to its two-pronged approach, it spots anomalies that the com-
petitors miss (Figure 4).

Reproducibility: our code and data are publicly available1. The
paper is organized in the usual way (related work, preliminaries,
proposed method, experiments, and conclusions).

2 RELATEDWORK

We discuss previous work on detecting anomalous entities (nodes,
edges, events, etc.) on static and dynamic graphs. See [4] for an
extensive survey on graph-based anomaly detection.

Anomaly detection in static graphs can be described under
the following categories:

• Anomalous Node Detection: [3] extracts egonet-based features
and finds empirical patterns with respect to the features. Then,
it identifies nodes whose egonets deviate from the patterns. [27]
groups nodes that share many neighbors and spots nodes that
cannot be assigned to any community.
• Anomalous Edge Detection: [6] encodes the input graph based
on similar connectivity between nodes, then spots edges whose
removal significantly reduces the total encoding cost. [24] fac-
torizes the adjacency matrix and flags edges which introduce
high reconstruction error as outliers.
• Anomalous Subgraph Detection: [11] and [20] measure the anoma-
lousness of nodes and edges, then find a dense subgraph consist-
ing of many anomalous nodes and edges.

Anomaly detection in dynamic graphs can also be described
under the following categories:

• Anomalous Node Detection: [23] approximates the adjacency ma-
trix of the current snapshot based on incremental matrix factor-
ization. Then, it spots nodes corresponding to rows with high
reconstruction error. [25] computes nodes features (degree, close-
ness centrality, etc) in each graph snapshot. Then, it identifies
nodes whose features are notably different from their previous
values and the features of nodes in the same community.

1https://github.com/minjiyoon/anomrank

• Anomalous Edge Detection: [8] detects edges that connect sparsely-
connected parts of a graph. [18] spots edge anomalies based on
their occurrence, preferential attachment and mutual neighbors.
• Anomalous Subgraph Detection: [5] spots near-bipartite cores
where each node is connected to others in the same core densly
within a short time. [12] and [21] detect groups of nodes who
form dense subgraphs in a temporally synchronized manner.
[22] identifies dense subtensors created within a short time.
• Event Detection: [1, 9, 10, 14] detect the following events: sudden
appearance of many unexpected edges [1], sudden appearance
of a dense graph [9], sudden drop in the similarity between two
consecutive snapshots [14], and sudden prolonged spikes and
lightweight stars [10].
Our proposedAnomRank is an anomalous event detectionmethod

with fast speed and high accuracy. It can be easily extended to local-
ize culprits of anomalies into nodes and substructures (Section 4.4),
and it detects various types of anomalies in dynamic graphs in a
real-time. Table 1 compares AnomRank to existing methods.
Table 1: AnomRank out-features competitors: comparison of our

proposed AnomRank and existing methods for anomaly detection

in dynamic graphs.
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Real-time detection∗ ✓ ✓
Allow edge deletions ✓ ✓ ✓
Structural anomalies ✓ ✓ ✓
Edge weight anomalies ✓ ✓ ✓ ✓ ✓ ✓ ✓
∗compute 1M edges within 5 seconds.

3 PRELIMINARIES

Table 2 gives a list of symbols and definitions.
Various node score functions have been designed to estimate

importance (centrality, etc.) of nodes in a graph: PageRank [17];
HITS [13] and its derivatives (SALSA) [15]; Fiedler vector [7]; all
the centrality measures from social network analysis (eigenvector-
, degree-, betweeness-centrality [26]). Among them, we extend
PageRank to design our node score functions in Section 4.2 because
(a) it is fast to compute, (b) it led to the ultra-successful ranking

https://github.com/minjiyoon/anomrank


Table 2: Table of symbols.

Symbol Definition

G (un)directed and (un)weighted input graph
∆G update in graph
n,m numbers of nodes and edges in G
Ã (n × n) row-normalized adjacency matrix of G
B̃ (n × n) row-normalized adjacency matrix of G + ∆G
∆A (n × n) difference between Ã⊤ and B̃⊤ (= B̃⊤ − Ã⊤)
c damping factor of PageRank
bs (n × 1) uniform starting vector
bw (n × 1) out-edge proportional starting vector
Ãs (n × n) row-normalized unweighted adjacency matrix
Ãw (n × n) row-normalized weighted adjacency matrix

method of Google, (c) it is intuitive (‘your importance depends
on the importance of your neighbors’). Next, we briefly review
PageRank and its incremental version in dynamic graphs.

PageRank. As shown in [29], PageRank scores for all nodes are
represented as a PageRank score vector p which is defined by the
following equation:

p = (1 − c)
∞∑
i=0
(cÃ⊤)ib

where c is a damping factor, Ã is the row-normalized adjacency
matrix, and b is the starting vector. This equation is interpreted as
a propagation of scores across a graph: initial scores in the starting
vector b are propagated across the graph by multiplying with Ã⊤;
since the damping factor c is smaller than 1, propagated scores
converge, resulting in PageRank scores. As shown in [28], PageRank
computation time is proportional to the L1 length of the starting
vector b, since small L1 length of b leads to faster convergence of
iteration (

∑∞
i=0(cÃ

⊤)i ) with damping factor c . Here L1 length of a
vector is defined as the sum of absolute values of its entries. The
L1 length of a matrix is defined as the maximum L1 length of its
columns.

Incremental PageRank. When edges are inserted or deleted,
PageRank scores can be updated incrementally from the previous
PageRank scores. Let Ã be the row-normalized adjacency matrix
of a graph G and B̃ be the row-normalized adjacency matrix after
a change ∆G happened during ∆t . From now on, denote ∆A =
B̃⊤ − Ã⊤, the difference between transpose of normalized matrices
Ã⊤ and B̃⊤.

Lemma 1 (Dynamic PageRank, Theorem 3.2 in [28]). Given
updates ∆A in a graph during ∆t , an updated PageRank vector p(t +
∆t) is computed incrementally from a previous PageRank vector p(t)
as follows:

p(t + ∆t ) = p(t ) +
∞∑
k=0
(c(Ã⊤ + ∆A))kc∆Ap(t )

Note that, for small changes in a graph, the L1 length of the starting
vector c∆Ap(t) is much smaller than 1, the L1 length of the starting
vector b in the static PageRank equation, resulting in much faster
convergence.

4 PROPOSED METHOD

Node scores present the importance of nodes across a given graph.
Thus, as the graph evolves under normal behavior with the insertion
and deletion of edges, node scores evolve smoothly. In contrast,
anomalies such as network attacks or rating manipulation often

(a) Structure Change (b) Edge Weight Change

Figure 2: Two-pronged approach: Changes in dynamic graphs are

classified into two types, structure change and edge weight change.

aim to complete their goals in a short time, e.g. to satisfy their
clients, inducing large and abrupt changes in node scores. Our key
intuition is that such abrupt gains or losses are reflected in the 1st
and 2nd derivative of node scores: large 1st derivative identifies
large changes, while large 2nd derivative identifies abrupt changes
in the trend of the data, thereby distinguishing changes from normal
users who evolve according to smooth trends. Thus, tracking 1st and
2nd order derivatives helps detect anomalies in dynamic graphs.

Changes in a dynamic graph are classified into two types: struc-
ture changes and edge weight changes. Since these two types of
changes affect node scores of the graph differently (more details
in Section 4.2), we need to handle them separately. Thus, first, we
classify anomalies in dynamic graphs into two types: AnomalyS
and AnomalyW (Section 4.1). Then we design two node score
functions based on characteristics of these two types of anomalies,
respectively (Section 4.2). Next, we define two novel metrics for
anomalousness using 1st and 2nd order derivatives of our node
scores, and verify the effectiveness of each metric on the respec-
tive type of anomalies theoretically (Section 4.3). Based on these
analyses, we introduce our method AnomRank, a fast and accurate
anomaly detection algorithm in dynamic graphs (Section 4.4).

4.1 Anomalies in Dynamic Graphs

We classify anomalies in dynamic graphs into two types: AnomalyS
and AnomalyW.

4.1.1 AnomalyS. It is suspicious if a number of edges are in-
serted/deleted among nodes which are previously unrelated/related.
Hence, AnomalyS denotes a massive change with regard to the
graph structure. One example of AnomalyS is spam in mail net-
work graphs: a spammer sends mail to many unknown individuals,
generating out-edges toward previously unrelated nodes. Data ex-
filtration attacks in computer network graphs are another example:
attackers transfer a target’s data stealthily, generating unseen edges
around a target machine to steal information. As illustrated in Fig-
ure 2, we define a structure change as follows:

Definition 1 (Structure Change). If a node u changes the des-
tination of ∆m of its out-edges from previous neighbors v1, . . . ,v∆m
to new neighbors v ′1, . . . ,v

′
∆m , we call the change a structure change

of size ∆m.

With abnormally large ∆m, a structure change becomes an Anoma-
lyS. To detect AnomalyS, we need to focus on the existence of
edges between two nodes, rather than the number of occurrences
of edges between two nodes.



4.1.2 AnomalyW. In dynamic graphs, an edge between two nodes
could occur several times. Edge weight is proportional to the num-
ber of edge occurrences. AnomalyW denotes a massive change of
edge weights in a graph. One example of AnomalyW is port scan
attacks in computer network graphs: to scan ports in a target IP
address, attackers repeatedly connect to the IP address, thus increas-
ing the number of edge occurrences to the target node. On Twitter,
high edge density on a user-keyword graph could indicate bot-like
behavior, e.g. bots posting about the same content repeatedly. As
illustrated in Figure 2, we define an edge weight change as follows:

Definition 2 (EdgeWeight Change). If a nodeu adds/subtracts
∆m out-edges to neighbor node v , we call the change an edge weight
change of size ∆m.

With abnormally large ∆m, an edge weight change becomes an
AnomalyW. In contrast to AnomalyS, here we focus on the num-
ber of occurrences of each edge, rather than only the presence or
absence of an edge.

4.2 Node Score Functions for Detecting

AnomalyS and AnomalyW

To detect AnomalyS and AnomalyW, we first define two node
score functions, ScoreS and ScoreW, which we use to define our
anomalousness metrics in Section 4.3.

4.2.1 ScoreS. We introduce node score ScoreS, which we use to
catch AnomalyS. Define the row-normalized unweighted adjacency
matrix Ãs , a starting vector bs which is an all- 1n vector of length n
(the number of nodes), and the damping factor c .

Definition 3 (ScoreS). ScoreS node score vector ps is defined
by the following iterative equation:

ps = cÃ⊤s ps + (1 − c)bs

For this (unweighted) case, ScoreS is the same as PageRank, but
we refer to it as ScoreS for consistency with our later definitions.
Note that the number of edge occurrences between nodes is not
considered in ScoreS. Using Lemma 1, we can compute ScoreS
incrementally at fast speed, in dynamic graphs.

4.2.2 ScoreW. Next, we introduce the second node score, ScoreW,
which we use to catch AnomalyW. To incorporate edge weight,
we use the weighted adjacency matrix Aw instead of As . However,
this is not enough on its own: imagine an attacker node who adds
a massive number of edges, all toward a single target node, and
the attacker has no other neighbors. Since Ãw is row-normalized,
this attacker appears no different in Ãw as if they only added a
single edge toward the same target. Hence, to catch such attackers,
we also introduce an out-degree proportional starting vector bw , i.e.
setting the initial scores of each node proportional to its outdegree.

Definition 4 (ScoreW). ScoreW node score vector pw is defined
by the following iterative equation:

pw = cÃ⊤wpw + (1 − c)bw

Aw (i, j) is the edge weight from node i to node j. bw (i) is mi
m ,

wheremi denotes the total edge weight of out-edges of node i , and
m denotes the total edge weight of the graph.

Next, we show how ScoreW is computed incrementally in a
dynamic graph. Assume that a change ∆G happens in graph G in

time interval ∆t , inducing changes ∆Aw and ∆bw in the adjacency
matrix and the starting vector, respectively.

Lemma 2 (Dynamic ScoreW). Given updates ∆Aw and ∆bw in
a graph during ∆t , an updated score vector pw (t + ∆t) is computed
incrementally from a previous score vector pw (t) as follows:

pw (t + ∆t ) = pw (t ) +
∞∑
k=0
(c(Ã⊤w + ∆Aw ))

kc∆Awpw (t )

+ (1 − c)
∞∑
k=0
(c(Ã⊤w + ∆Aw ))

k∆bw

Proof. For brevity, pnw ← pw (t + ∆t) and pow ← pw (t).

pnw = (1 − c)
∞∑
k=0

ck (Ã⊤w + ∆Aw )
k (bw + ∆bw )

= (1 − c)
∞∑
k=0

ck (Ã⊤w + ∆Aw )
kbw + (1 − c)

∞∑
k=0

ck (Ã⊤w + ∆Aw )
k∆bw

= pow +
∞∑
k=0
(c(Ã⊤w + ∆Aw ))

kc∆Awpow + (1 − c)
∞∑
k=0
(c(Ã⊤w + ∆Aw ))

k∆bw

In the third line, we use Lemma 1. ■

Note that, for small changes in a graph, the starting vectors of the
last two terms, c∆Awpw (t) and ∆bw have much smaller L1 lengths
than the original starting vector bw , so they can be computed at
fast speed.

4.2.3 Suitability. We estimate changes in ScoreS induced by a
structure change (Definition 1) and compare the changes with those
in ScoreW to prove the suitability of ScoreS for detecting Anoma-
lyS.

Lemma 3 (Upper Bound for Structure Change in ScoreS).
When a structure change of size ∆m happens around a node u with k
out-neighbors, ∥∆As ∥1 is upper-bounded by 2∆m

k .

Proof. In∆As , only theu-th column has nonzeros. Thus, ∥∆As ∥1
= ∥∆As (u)∥1. ∆As (u) is normalized by k as the total number of out-
neighbors of node u is k . For out-neighbors vi = v1, . . . ,v∆m who
lose edges, ∆As (vi ,u) = −

1
k . For out-neighbors v

′
i = v

′
1, . . . ,v

′
∆m

who earn edges, ∆As (v
′
i ,u) =

1
k . Then ∥∆As ∥1 = ∥∆As (u)∥1 =

∆m
k +

∆m
k =

2∆m
k . ■

When a structure change is presented in ScoreW, ∥∆bw ∥1 = 0 since
there is no change in the number of edges. Moreover ∥∆Aw ∥1 =
2∆m
mu

since each row in Aw is normalized by the total sum of out-
edge weights, mu , which is larger than the total number of out-
neighbors k . In other words, a structure change generates larger
changes in ScoreS ( 2∆mk ) than ScoreW ( 2∆mmu

). Thus ScoreS is
more suitable to detect AnomalyS than ScoreW.

Similarly, we estimate changes in ScoreW induced by an edge
weight change (Definition 2) and compare the changes with those
in ScoreS to prove the suitability of ScoreW for detecting Anoma-
lyW.

Lemma 4 (Upper Bound for EdgeWeight Change in ScoreW).
When an edge weight change of size∆m happens around a nodeu with
mu out-edge weights in a graph withm total edge weights, ∥∆Aw ∥1
and ∥∆bw ∥1 are upper bounded by 2∆m

mu
and 2∆m

m , respectively.



Proof. In∆Aw , only theu-th column has nonzeros. Then ∥∆Aw ∥1
= ∥∆Aw (u)∥1. Node u has mvi edges toward each out-neighbor
vi (i = 1, . . . ,k). Thus the total sum of out-edge weights, mu , is∑k
i=1mvi . Since an weighted adjacency matrix is normalized by

the total out-edge weights, Ã⊤w (vi ,u) =
mvi
mu

. After ∆m edges are
added from node u to node vk , ∆Aw (vi ,u) =

mvi
mu+∆m −

mvi
mu

for

i , k , ∆Aw (vi ,u) =
mvi +∆m
mu+∆m −

mvi
mu

for i = k . Then ∥∆Aw ∥1 =
∥∆Aw (u)∥1 is bounded as follows:

∥∆Aw ∥1 = ∥∆Aw (u) ∥1 =
k∑
i=1

mvi (
1

mu
−

1
mu + ∆m

) +
∆m

mu + ∆m

=
2∆m

mu + ∆m
≤

2∆m
mu

bw (i) =
mi
m wheremi is the total sum of out-edge weights of node

i . After ∆m edges are added from node u to node vk , ∆bw (i) =
mi

m+∆m −
mi
m for i , u, ∆bw (i) = mi+∆m

m+∆m −
mi
m for i = u. Then

∥∆bw ∥1 is bounded as follows:

∥∆bw ∥1 =
n∑
i=1

mi (
1
m
−

1
m + ∆m

) +
∆m

m + ∆m
=

2∆m
m + ∆m

≤
2∆m
m

■

In contrast, when an edge weight change is presented in ScoreS,
∥∆As ∥1 = 0 since the number of out-neighbors is unchanged. Note
that ∥∆bs ∥1 = 0 since bs is fixed in ScoreS. In other words, Anoma-
lyW does not induce any change in ScoreS.

4.3 Metrics for AnomalyS and AnomalyW

Next, we define our two novel metrics for evaluating the anoma-
lousness at each time in dynamic graphs.

4.3.1 AnomRankS. First, we discretize the first order derivative of
ScoreS vector ps as follows:

p′s =
ps (t + ∆t ) − ps (t )

∆t
Similarly, the second order derivative of ps is discretized as follows:

p′′s =
(ps (t + ∆t ) − ps (t )) − (ps (t ) − ps (t − ∆t ))

∆t 2

Next, we define a novel metric AnomRankS which is designed to
detect AnomalyS effectively.

Definition 5 (AnomRankS). Given ScoreS vector ps , Anom-
RankS as is an (n × 2) matrix [p′s p′′s ], concatenating 1st and 2nd
derivatives of ps . The AnomRankS score is ∥as ∥1.

Next, we study how AnomRankS scores change under the assump-
tion of a normal stream, or an anomaly, thus explaining how it
distinguishes anomalies from normal behavior. First, we model
a normal graph stream based on Lipschitz continuity to capture
smoothness:

Assumption 1 (∥ps (t)∥1 in Normal Stream). In a normal graph
stream, ∥ps (t)∥1 is Lipschitz continuous with positive real constants
K1 and K2 such that,

∥p′s ∥1 ≤ K1 and ∥p′′s ∥1 ≤ K2

In Lemma 5, we back up Assumption 1 by upper-bounding ∥p′s ∥1
and ∥p′′s ∥1. For brevity, all proofs of this subsection are given in
Supplement A.3.

Lemma 5 (Upper bound of ∥p′s ∥1). Given damping factor c and
updates ∆As in the adjacency matrix during ∆t , ∥p′s ∥1 is upper-
bounded by c

1−c ∥
∆As
∆t ∥1.

Proof. Proofs are given in Supplement A.3. ■

We bound the L1 length of p′′s in terms of L1 length of ∆Aso and
∆Asn , where ∆Aso denotes the changes in As from time (t − ∆t)
to time t , and ∆Asn denotes the changes in As from t to (t + ∆t).

Lemma 6 (Upper bound of ∥p′′s ∥1). Given damping factor c and
sequencing updates ∆Aso and ∆Asn , ∥p

′′
s ∥1 is upper-bounded by

1
∆t 2 (

c
1−c ∥∆Asn − ∆Aso ∥1 + (

c
1−c )

2∥∆Asn ∥
2
1 + (

c
1−c )

2∥∆Aso ∥
2
1 ).

Proof. Proofs are given in Supplement A.3. ■

Normal graphs have small changes thus having small ∥∆As ∥1. This
results in small values of ∥p′s ∥1. In addition, normal graphs change
gradually thus having small∥∆Asn −∆Aso ∥1. This leads to small val-
ues of ∥p′′s ∥1. Then, AnomRankS score ∥as ∥1 = max(∥p′s ∥1, ∥p′′s ∥1)
has small values in normal graph streams under small upper bounds.

Observation 1 (AnomalyS in AnomRankS). AnomalyS in-
volves sudden structure changes, inducing large AnomRankS scores.

AnomalyS happens with massive changes (∆m∆t ) abruptly (∆
2m
∆t 2 ). In

the following Theorem 1, we explain Observation 1 based on large
values of ∆m

∆t and ∆2m
∆t 2 in AnomalyS.

Theorem 1 (Upper bounds of ∥p′s ∥1 and ∥p′′s ∥1 with Anoma-
lyS). When AnomalyS occurs with large ∆m

∆t and ∆2m
∆t 2 , L1 lengths

of p′s and p′′s are upper-bounded as follows:

∥p′s ∥1 ≤
c

1 − c
2
k
∆m
∆t

∥p′′s ∥1 ≤
c

1 − c
2
k
∆2m
∆t 2

+ 2(
c

1 − c
)2(

2
k
)2(

∆m
∆t
)2

Proof. Proofs are given in Supplement A.3. ■

Based on Theorem 1, AnomalyS has higher upper bounds of ∥p′s ∥1
and ∥p′′s ∥1 than normal streams. This gives an intuition for why
AnomalyS results in high AnomRankS scores (Figure 1(c)). We
detect AnomalyS successfully based on AnomRankS scores in
real-world graphs (Figure 3).

4.3.2 AnomRankW. Wediscretize the first and second order deriva-
tives p′w and p′′w of pw as follows:

p′w =
pw (t + ∆t ) − pw (t )

∆t

p′′w =
(pw (t + ∆t ) − pw (t )) − (pw (t ) − pw (t − ∆t ))

∆t 2

Then we define the second metric AnomRankW which is designed
to find AnomalyW effectively.

Definition 6 (AnomRankW). Given ScoreW vector pw , Anom-
RankW aw is a (n × 2) matrix [p′w p′′w ], concatenating 1st and 2nd
derivatives of pw . The AnomRankW score is ∥aw ∥1.

We model smoothness of ∥pw (t)∥1 in a normal graph stream using
Lipschitz continuity in Assumption 2. Then, similar to what we
have shown in the previous Section 4.3.1, we show upper bounds
of ∥p′w ∥1 and ∥p′′w ∥1 in Lemmas 7 and 8 to explain Assumption 2.



Assumption 2 (∥pw (t)∥1 in Normal Stream). In a normal graph
stream, ∥pw (t)∥1 is Lipschitz continuous with positive real constants
C1 and C2 such that,

∥p′w ∥1 ≤ C1 and ∥p′′w ∥1 ≤ C2

Lemma 7 (Upper bound of ∥p′w ∥1). Given damping factor c ,
updates ∆Aw in the adjacency matrix, and updates ∆bw in the start-
ing vector during ∆t , ∥p′w ∥1 is upper-bounded by

1
∆t (

c
1−c ∥∆Aw ∥1 +

∥∆bw ∥1).

Proof. Proofs are given in Supplement A.3. ■

In the following lemma, ∥p′′s ∥max denotes the upper bound of
∥p′′s ∥1 which we show in Lemma 6. ∆Awo is the changes in Aw
from time (t − ∆t) to time t , and ∆Awn is the changes in Aw from
t to (t + ∆t). ∆bwo is the changes in bw from time (t − ∆t) to time
t , and ∆bwn is the changes in bw from t to (t + ∆t).

Lemma 8 (Upper bound of ∥p′′w ∥1). Given damping factor c , se-
quencing updates ∆Awo and ∆Awn , and sequencing updates ∆bwo
and ∆bwn , the upper bound of ∥p

′′
w ∥1 is presented as follows:

∥p′′s ∥max +
1

∆t 2
( ∥∆bwn − ∆bwo ∥1 +

c
1 − c

∥∆Awn ∥1 ∥∆bwn ∥1)

Proof. Proofs are given in Supplement A.3. ■

Normal graph streams have small changes (small ∥∆Aw ∥1 and
small ∥∆bw ∥1) and evolve gradually (small ∥∆bwn −∆bwo ∥1). Then,
normal graph streams have small AnomRankW scores under small
upper bounds of ∥p′w ∥1 and ∥p′′w ∥1.

Observation 2 (AnomalyW in AnomRankW). AnomalyW in-
volves sudden edge weight changes, inducing large AnomRankW.

We explain Observation 2 by showing large upper bounds of ∥p′w ∥1
and ∥p′′w ∥1 induced by large values of ∆m

∆t and ∆2m
∆t 2 in AnomalyW.

Theorem 2 (Upper bounds of ∥p′w ∥1 and ∥p′′w ∥1 with Anoma-
lyW). When AnomalyW occurs with large ∆m

∆t and ∆2m
∆t 2 , L1 lengths

of p′w and p′′w are upper-bounded as follows:

∥p′w ∥1 ≤
c

1 − c
2
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∆m
∆t
+

2
m

∆m
∆t

∥p′′w ∥1 ≤
c
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2
k
∆2m
∆t 2

+
2
m

∆2m
∆t 2

+ 2(
c

1 − c
)2(

2
k
)2(

∆m
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)2 +

c
1 − c

2
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2
m
(
∆m
∆t
)2

Proof. Proofs are given in Supplement A.3. ■

With high upper bounds of ∥p′w ∥1 and ∥p′′w ∥1, shown in Theorem 2,
AnomalyW has high AnomRankW scores (Figure 1(c)). We detect
AnomalyW successfully based on AnomRankW scores in real-
world graphs (Figure 3).

4.4 Algorithm

Algorithm 1 describes how we detect anomalies in a dynamic graph.
We first calculate updates ∆As in the unweighted adjacency matrix,
updates ∆Aw in the weighted adjacency matrix, and updates ∆bw
in the out-edge proportional starting vector (Line 1). These com-
putations are proportional to the number of edge changes, taking

Algorithm 1: AnomRank

Require: updates in a graph: ∆G , previous ScoreS/W: polds , poldw
Ensure: anomaly score: sanomaly, updated ScoreS/W: pnews , pneww
1: compute updates ∆As , ∆Aw and ∆bw
2: compute pnews and pneww incrementally from polds and poldw using

∆As , ∆Aw and ∆bw
3: sanomaly = ComputeAnomalyScore(pnews , pneww )

4: return sanomaly

Algorithm 2: ComputeAnomalyScore
Require: ScoreS and ScoreW vectors: ps , pw
Ensure: anomaly score: sanomaly
1: compute AnomRankS as = [p′s p′′s ]
2: compute AnomRankW aw = [p′w p′′w ]
3: sanomaly = ∥a∥1 = max( ∥as ∥1, ∥aw ∥1)

4: return sanomaly

a few milliseconds for small changes. Then, AnomRank updates
ScoreS and ScoreW vectors using the update rules in Lemmas 1
and 2 (Line 2). Then AnomRank calculates an anomaly score given
ScoreS and ScoreW in Algorithm 2. AnomRank computes Anom-
RankS and AnomRankW, and returns the maximum L1 length
between them as the anomaly score.

Normalization: As shown in Theorems 1 and 2, the upper
bounds of AnomRankS and AnomRankW are based on the number
of out-neighbors k and the number of out-edge weightsmu . This
leads to skew in anomalousness score distributions since many real-
world graphs have skewed degree distributions. Thus, we normalize
each node’s AnomRankS and AnomRankW scores by subtracting
its mean and dividing by its standard deviation, which we maintain
along the stream.

Explainability andAttribution: AnomRank explains the type
of anomalies by comparing AnomRankS and AnomRankW: higher
scores of AnomRankS suggest that AnomalyS has happened, and
vice versa. High scores of both metrics indicate a large edge weight
change that also alters the graph structure. Furthermore, we can
localize culprits of anomalies by ranking AnomRank scores of each
node in the score vector, as computed in Lines 1 and 2 of Algorithm
2. We show this localization experimentally in Section 5.5.

∆t selection: Our analysis and proofs, hold for any value of ∆t .
The choice of ∆t is outside the scope of this paper, and probably
best decided by a domain expert: large ∆t is suitable for slow (’low
temperature’) attacks; small ∆t spots fast and abrupt attacks. In our
experiments, we chose ∆t = 1 hour, and 1 day, respectively, for a
computer-network intrusion setting, and for a who-emails-whom
network.

5 EXPERIMENTS

In this section, we evaluate the performance of AnomRank com-
pared to state-of-the-art anomaly detection methods on dynamic
graphs. We aim to answer the following questions:

• Q1. Practicality.How fast, accurate, and scalable is AnomRank
compared to its competitors? (Section 5.2)
• Q2. Effectiveness of two-pronged approach. How do our
two metrics, AnomRankS and AnomRankW, complement each
other in real-world and synthetic graphs? (Section 5.3)
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Figure 3: AnomRank is fastest and most accurate: (a-c) AnomRank

outperforms the baselines in terms of both accuracy and speed on

the DARPA dataset. (d) AnomRank achieves better precision and re-

call on high ranks (top-50, . . . , 250) than its competitors.

• Q3. Effectiveness of two-derivatives approach. How do the
1st and 2nd order derivatives of ScoreS and ScoreW comple-
ment each other? (Section 5.4)
• Q4. Attribution. How accurately does AnomRank localize cul-
prits of anomalous events? (Section 5.5)

5.1 Setup

We use SedanSpot [8] and DenseAlert [22], state-of-the-art anom-
aly detection methods on dynamic graphs as our baselines. We use
two real-world dynamic graphs, DARPA and ENRON, and one syn-
thetic dynamic graph, RTM, with two anomaly injection scenarios.
Anomalies are verified by comparing to manual annotations or by
correlating with real-world events. More details of experimental
settings and datasets are described in Supplement A.1 and A.2.

5.2 Practicality

We examine the practicality of AnomRank on the DARPA dataset, a
public benchmark for Network Intrusion Detection Systems. In this
network intrusion setting, our focus is on detecting high-volume
(i.e. high edge-weight) intrusions such as denial of service (DOS) at-
tacks, which are typically the focus of graphmining-based detection
approaches. Hence, we use only the AnomRankW metric.

Precision and Recall: Using each method, we first compute
anomaly scores for each of the 1139 graph snapshots, then se-
lect the top-k most anomalous snapshots (k = 50, 100, · · · , 800).
Then we compute precision and recall for each method’s output.
In Figure 3(d), AnomRank shows higher precision and recall than
DenseAlert and SedanSpot on high ranks (top-50, . . . , 250). Con-
sidering that anomaly detection tasks in real-world settings are
generally focused on the most anomalous instances, high accuracy

on high ranks is more meaningful than high accuracy on low ranks.
Moreover, considering that the number of ground truth anomalies
is 288, its precision and recall up to top-250 better reflects its prac-
ticality.

Accuracy vs. Running Time: In Figures 1(a) and 3(a-c), Anom-
Rank is most accurate and fastest. Compared to SedanSpot, Anom-
Rank achieves up to 18% higher precision on top-k ranks with
49.5× faster speed. Compared to DenseAlert, AnomRank achieves
up to 35% higher precision with 4.8× faster speed. DenseAlert and
SedanSpot require several subprocesses (hashing, random-walking,
reordering, sampling, etc), resulting in large computation time.

Scalability: Figure 1(b) shows the scalability of AnomRank
with the number of edges. We plot the wall-clock time needed to
run on the (chronologically) first 2, 22, . . . , 222 edges of the DARPA
dataset. This confirms the linear scalability of AnomRank with
respect to the number of edges in the input dynamic graph. Note
that AnomRank processes 1M edges within 1 second, allowing
real-time anomaly detection.

Effectiveness: Figure 1(c) shows changes of AnomRank scores
in the DARPA dataset, with time window of ∆T = 1 hour. Consis-
tently with the large upper bounds shown in Theorems 1 and 2,
ground truth attacks (red crosses) have large AnomRank scores in
Figure 1(c). Given mean and std of anomaly scores of all snapshots,
setting an anomalousness threshold of (mean + 1

2 std), 77% of spikes
above the threshold are true positives. This shows the effectiveness
of AnomRank as a barometer of anomalousness.

5.3 Effectiveness of Two-Pronged Approach

In this experiment, we show the effectiveness of our two-pronged
approach using real-world and synthetic graphs.

5.3.1 Real-World Graph. We measure anomaly scores based on
four metrics: AnomRankS, AnomRankW, SedanSpot, and DenseAl-
ert, on the ENRON dataset. In Figure 4, AnomRankW and SedanS-
pot show similar trends, while AnomRankS detects different events
as anomalies on the same dataset. DenseAlert shows similar trends
with the sum of AnomRankS and AnomRankW, while missing
several anomalous events. This is also reflected in the low accuracy
of DenseAlert on the DARPA dataset in Figure 3. The anomalies
detected by AnomRankS and AnomRankW coincide with major
events in the ENRON timeline2 as follows:
(1) June 12, 2000: Skilling makes joke at Las Vegas conference, comparing California

to the Titanic.
(2) August 23, 2000: FERC orders an investigation into Timothy Belden’s strategies

designed to drive electricity prices up in California.
(3) Oct. 3, 2000: Enron attorney Richard Sanders travels to Portland to discuss Timothy

Belden’s strategies.
(4) Dec. 13, 2000: Enron announces that Jeffrey Skilling will take over as chief executive.
(5) Mar. 2001: Enron transfers large portions of EES business into wholesale to hide

EES losses.
(6) July 13, 2001: Skilling announces desire to resign to Lay. Lay asks Skilling to take

the weekend and think it over.
(7) Oct. 17, 2001: Wall Street Journal reveals the precarious nature of Enron’s business.
(8) Nov. 19, 2001: Enron discloses it is trying to restructure a 690 million obligation.
(9) Jan. 23-25, 2002: Lay resigns as chairman and CEO of Enron. Cliff Baxter, former

Enron vice chairman, commits suicide.
(10) Feb. 2, 2002: The Powers Report, a summary of an internal investigation into

Enron’s collapse spreads out.

The high anomaly scores of AnomRankS coincide with the time-
line events when Enron conspired to drive the California electricity
2http://www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html
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Figure 4: Two-pronged approach pays off: AnomRankW and

SedanSpot show similar trends on the Enron dataset, while Anom-

RankS detects different events as anomalies on the same dataset.

DenseAlert shows similar trends with the sum of AnomRankS and

AnomRankW while missing several anomalous events.

price up (Events 1,2,3) and office politics played out in Enron (Events
4,5,6). Meanwhile, AnomRankW shows high anomaly scores when
the biggest scandals of the company continued to unfold (Events 7,
8,9,10). Note that AnomRankS and AnomRankW are designed to
detect different properties of anomalies on dynamic graphs. Anom-
RankS is effective at detecting AnomalyS like unusual email com-
munications for conspiration, while AnomRankW is effective at
detecting AnomalyW like massive email communications about
big scandals that swept the whole company. The non-overlapping
trends of AnomRankS andAnomRankW show that the twometrics
complement each other successfully in real-world data. Summariz-
ing the two observations we make:
• Observation 1. AnomRankS and AnomRankW spot different
types of anomalous events.
• Observation 2. DenseAlert and SedanSpot detect a subset of
the anomalies detected by AnomRank.

5.3.2 Synthetic Graph. In our synthetic graph generated by RTM
method, we inject two types of anomalies to examine the effective-
ness of our two metrics. Details of the injections are as follows:
• InjectionS: We choose 50 timestamps uniformly at random: at
each chosen timestamp, we select 8 nodes uniformly at random,
and introduce all edges between these nodes in both directions.
• InjectionW: We choose 50 timestamps uniformly at random:
at each chosen timestamp, we select two nodes uniformly at
random, and add 70 edges from the first to the second.

A clique is an example of AnomalyS with unusual structure pattern,
while high edge weights are an example of AnomalyW. Hence, In-
jectionS and InjectionW are composed of AnomalyS and Anoma-
lyW, respectively.

Then we evaluate the precision of the top-50 highest anomaly
scores output by the AnomRankS metric and the AnomRankW
metric. We also evaluate each metric on theDARPA dataset based on
their top-250 anomaly scores. In Table 3, AnomRankS shows higher
precision on InjectionS than AnomRankW, while AnomRankW

Table 3: AnomRankS and AnomRankW complement each other:

we measure precision of the two metrics on the synthetic graph

with two injection scenarios (InjectionS, InjectionW) and the

real-world graph DARPA. We measure precision on top-50 and top-

250 ranks on the synthetic graph and DARPA, respectively.

Metric
Dataset

InjectionS InjectionW DARPA

AnomRankS only .96 .00 .42
AnomRankW only .82 .79 .69

Table 4: 1st and 2nd order derivatives complement each other:

AnomRankW-1st and AnomRankW-2nd are 1st and 2nd deriva-

tives of ScoreW. Combining AnomRankW-1st and AnomRankW-

2nd results in the highest precision.

Metric
Dataset

InjectionS InjectionW DARPA

AnomRankW-1st .06 .11 .65
AnomRankW-2nd .80 .78 .61
AnomRankW .82 .79 .69

has higher precision on InjectionW and DARPA. In Section 4.2.3,
we showed theoretically that AnomalyS induces larger changes in
AnomRankS than AnomRankW, explaining the higher precision of
AnomRankS than AnomRankW on InjectionS. We also showed
that adding additional edge weights has no effect on AnomRankS,
explaining that AnomRankS does not work on InjectionW. For
the DARPA dataset, AnomRankW shows higher accuracy than
AnomRankS. DARPA contains 2.7M attacks, and 90% of the attacks
(2.4M attacks) are DOS attacks generated from only 2-3 source
IP adderesses toward 2-3 target IP addresses. These attacks are
of AnomalyW type with high edge weights. Thus AnomRankW
shows higher precision on DARPA than AnomRankS.

5.4 Effectiveness of Two-Derivatives Approach

In this experiment, we show the effectiveness of 1st and 2nd order
derivatives of ScoreS and ScoreW in detecting anomalies in dy-
namic graphs. For brevity, we show the result on ScoreW; result on
ScoreS is similar. Recall that AnomRankW score is defined as the
L1 length of aw = [p′w p′′w ] where p′w and p′′w are the 1st and 2nd
order derivatives of ScoreW, respectively. We define two metrics,
AnomRankW-1st and AnomRankW-2nd, which denote the L1
lengths of p′w and p′′w , respectively. By estimating precision using
AnomRankW-1st and AnomRankW-2nd individually, we exam-
ine the effectiveness of each derivative using the same injection
scenarios and evaluation approach as Section 5.3.2.

In Table 4, AnomRankW-1st shows higher precision on the
DARPA dataset, while AnomRankW-2nd has higher precision on
injection scenarios. AnomRankW-1st detects suspiciously large
anomalies based on L1 length of 1st order derivatives, while AnomRa
nkW-2nd detects abruptness of anomalies based on L1 length of
2nd order derivatives. Note that combining 1st and 2nd order deriva-
tives leads to better precision. This shows that 1st and 2nd order
derivatives complement each other.

5.5 Attribution

In this experiment, we show that AnomRank successfully localizes
the culprits of anomalous events as explained in the last paragraph
of Section 4.4. In Figure 5, given a graph snapshot detected as an
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Figure 5: Attribution: AnomRank localizes the culprits of anoma-

lous events in the DARPA dataset: in a Back DOS attack, the attacker

and victim IP have the top-2 largest scores; in an Nmap probing at-

tack, the victim IP has the largest AnomRank score.

anomaly in the DARPA dataset, nodes (IP addresses) are sorted in
order of their AnomRank scores. Outliers with significantly large
scores correspond to IP addresses which are likely to be engaged in
network intrusion attacks. At the 15th snapshot (T = 15) when Back
DOS attacks occur, the attacker IP (135.008.060.182) and victim IP
(172.016.114.050) have the largest AnomRank scores. In the 133th
snapshot (T = 133) where Nmap probing attacks take place, the
victim IP (172.016.112.050) has the largest score.

6 CONCLUSION

In this paper, we proposed a two-pronged approach for detecting
anomalous events in a dynamic graph.

Our main contributions are:
• Online, Two-Pronged Approach We introduced AnomRank,
a novel and simple detection method in dynamic graphs.
• Theoretical Guarantees We present theoretical analysis (The-
orems 1 and 2) on the effectiveness of AnomRank.
• Practicality In Section 5, we show that AnomRank outperforms
state-of-the-art baselines, with up to 49.5× faster speed or 35%
higher accuracy. AnomRank is fast, taking about 2 seconds on a
graph with 4.5 million edges.

Our code and data are publicly available3.
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A SUPPLEMENT

A.1 Experimental Setting

All experiments are carried out on a 3 GHz Intel Core i5 iMac, 16
GB RAM, running OS X 10.13.6. We implemented AnomRank and
SedanSpot in C++, and we used an open-sourced implementation
of DenseAlert4, provided by the authors of [22]. To show the best
trade-off between speed and accuracy, we set the sample size to 50
for SedanSpot and follow other parameter settings as suggested in
the original paper [8]. For AnomRank, we set the damping factor c
to 0.5, and stop iterations for computing node score vectors when
L1 changes of node score vectors are less than 10−3.

A.2 Dataset

DARPA [16] has 4.5M IP-IP communications between 9.4K source
IP and 2.3K destination IP over 87.7K minutes. Each communication
is a directed edge (srcIP, dstIP, timestamp, attack) where the attack
label indicates whether the communication is an attack or not.
We aggregate edges occurring in every hour, resulting in a stream
of 1463 graphs. We annotate a graph snapshot as anomalous if it
contains at least 50 attack edges. Then there are 288 ground truth
anomalies (23.8% of total). We use the first 256 graphs for initializing
means and variances needed during normalization (as described in
Section 4.4).
ENRON [19] contains 50K emails from 151 employees over 3 years
in the ENRON Corporation. Each email is a directed edge (sender,
receiver, timestamp). We aggregate edges occurring in every day
duration, resulting in a stream of 1139 graphs. We use the first 256
graphs for initializing means and variances.
RTM method [2] generates time-evolving graphs with repeated
Kronecker products. We use the publicly available code5. The gen-
erated graph is a directed graph with 1K nodes and 8.1K edges over
2.7K timestamps. We use the first 300 timestamps for initializing
means and variances.

A.3 Proofs

We prove upper bounds on the 1st and 2nd derivatives of ScoreS
and ScoreW, showing their effectiveness in detecting AnomalyS
and AnomalyW.

Proof of Lemma 5 (Upper bound of ∥p′s ∥1).
For brevity, pns ← ps (t + ∆t), pos ← ps (t). By Lemma 1, ∥pns − pos ∥1
is presented as follows:

∥pns − p
o
s ∥1 = ∥

∞∑
k=0

ck (Ã⊤s + ∆As )
kc(∆Aspos ) ∥1

≤ c
∞∑
k=0
∥ck (Ã⊤s + ∆As )

k ∥1 ∥∆Aspos ∥1

≤
c

1 − c
∥∆Aspos ∥1 ≤

c
1 − c

∥∆As ∥1

∥p′s ∥1 = ∥
pns − pos

∆t
∥1 ≤

c
1 − c

∥
∆As
∆t
∥1

Note that ∥(Ã⊤s + ∆As )
k ∥1 = ∥pos ∥1 = 1 since (Ã⊤s + ∆As ) is a

column-normalized stochastic matrix, and pos is a PageRank vector.
■

4https://github.com/kijungs/densealert
5www.alexbeutel.com/l/www2013

Proof of Lemma 6 (Upper bound of ∥p′′s ∥1).
For brevity, p0 ← ps (t − ∆t), p1 ← ps (t), p2 ← ps (t + ∆t),∆po ←
p1−p0,∆pn ← p2−p1,A← Ã⊤s ,∆A1 ← ∆Aso and ∆A2 ← ∆Asn .
In addition, we omit c by substituting A ← cA and ∆A ← c∆A
during this proof. By Lemma 1, ∆pn is:

∆pn =
∞∑
k=0
(A + ∆A1 + ∆A2)

k (∆A2p1)

∆pn can be viewed as an updated ScoreS with the original adja-
cency matrix Y1 = (A + ∆A1), the update ∆A2, and the starting
vector (∆A2p1) from an original vector ptemp =

∑∞
k=0 Y

k
1 (∆A2p1).

Then, by Lemma 1, ∆pn is presented as follows:

∆pn = ptemp +

∞∑
k=0
(Y1 + ∆A2)

k∆A2ptemp

=

∞∑
k=0

Y k
1 (∆A2p1) +

∞∑
k=0
(Y1 + ∆A2)

k∆A2

∞∑
i=0

Y i
1 (∆A2p1)

Then ∆pn − ∆po becomes as follows:

∆po =
∞∑
k=0
(A + ∆A1)

k (∆A1p0) =
∞∑
k=0

Y k
1 (∆A1p0)

∆pn − ∆po =
∞∑
k=0

Y k
1 (∆A2 − ∆A1)p1 +

∞∑
k=0

Y k
1 ∆A1(p1 − p0)

+

∞∑
k=0
(Y1 + ∆A2)

k∆A2

∞∑
i=0

Y i
1 (∆A2p1)

Since p1 − p0 = ∆po =
∑∞
k=0 Y

k
1 (∆A1p0),

the second term
∑∞
k=0 Y

k
1 ∆A1(p1 − p0) in the equation above is:

∞∑
k=0

Y k
1 ∆A1(p1 − p0) =

∞∑
k=0

Y k
1 ∆A1

∞∑
i=0

Y i
1 (∆A1p0)

Note that∥p0∥1 = ∥p1∥1 = 1 since p0 and p1 are PageRank vectors.
Recovering c fromA and ∆A, ∥

∑∞
k=0 Y

k
1 ∥1 and ∥

∑∞
k=0(Y1+∆A2)k ∥1

becomes as follows:

∥

∞∑
k=0

Y k
1 ∥1 = ∥

∞∑
k=0

ck (A + ∆A1)
k ∥1 =

1
1 − c

∥

∞∑
k=0
(Y1 + ∆A2)

k ∥1 = ∥
∞∑
k=0

ck (A + ∆A1 + ∆A2)
k ∥1 =

1
1 − c

Note that A + ∆A1 and A + ∆A1 + ∆A2 are column-normalized
stochastic matrices. Then ∥∆pn − ∆po ∥1 is bounded as follow:

∥∆pn − ∆po ∥1 ≤
c

1 − c
∥∆A2 − ∆A1 ∥1 + (

c
1 − c

)2( ∥∆A1 ∥
2
1 + ∥∆A2 ∥

2
1 )

Then, recovering c from all terms, ∥p′′s ∥1 is bounded as follows:

∥p′′s ∥1 =
∥∆pn − ∆po ∥1

∆t 2

≤

c
1−c ∥∆A2 − ∆A1 ∥1 + (

c
1−c )

2( ∥∆A1 ∥
2
1 + ∥∆A2 ∥

2
1 )

∆t 2

■

Proof of Theorem 1. (Upper bounds of ∥p′s ∥1 and ∥p′′s ∥1 with
AnomalyS) Use Lemma 3 and 5. ■

Proof of Lemma 7 (Upper bounds of ∥p′w ∥1).
For brevity, denote pow ← pw (t) and pnw ← pw (t+∆t). By Lemma 2,
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∥pnw − pow ∥1 is presented as follows:

pnw − p
o
w =

∞∑
k=0

ck (Ã⊤w + ∆Aw )
kc∆Awpow

+ (1 − c)
∞∑
k=0

ck (Ã⊤w + ∆Aw )
k∆bw

∥pnw − p
o
w ∥1 ≤

c
1 − c

∥∆Aw ∥1 + ∥∆bw ∥1

∥p′w ∥1 =
∥pnw − pow ∥1

∆t
≤

1
∆t
(

c
1 − c

∥∆Aw ∥1 + ∥∆bw ∥1)

∥(Ã⊤w + ∆Aw )
k ∥1 = ∥pow ∥1 = 1 since Ã⊤w + ∆Aw is a column-

normalized stochastic matrix and pow is a PageRank vector. ■

Proof of Lemma 8 (Upper bound of ∥p′′w ∥1).
For brevity, denote p0 ← pw (t − ∆t), p1 ← pw (t), p2 ← pw (t +
∆t),∆po ← p1−p0,∆pn ← p2−p1,A← Ã⊤w ,∆A1 ← ∆Awo ,∆A2 ←
∆Awn ,∆b1 ← ∆bwo and ∆b2 ← ∆bwn . In addition, we omit the
c term by substituting A ← cA,∆A ← c∆A and ∆b ← (1 − c)∆b
during this proof. By Lemma 2, ∆po and ∆pn are presented as
follows:

∆po =
∞∑
k=0
(A + ∆A1)

k∆A1p0 +
∞∑
k=0
(A + ∆A1)

k∆b1

∆pn =
∞∑
k=0
(A + ∆A1 + ∆A2)

k∆A2p1 +
∞∑
k=0
(A + ∆A1 + ∆A2)

k∆b2

Substracting the first term of ∆po from the first term of ∆pn is
equal to p′′s as shown in Lemma 6. Then ∆pn − ∆po is:

∆pn − ∆po = p′′s +
∞∑
k=0
(A + ∆A1 + ∆A2)

k∆b2 −
∞∑
k=0
(A + ∆A1)

k∆b1

By substituting A+∆A1 with Y2, the last two terms in the above
equation are presented as follows:

∞∑
k=0
(Y2 + ∆A2)

k∆b2 −
∞∑
k=0

Y k
2 ∆b1

=

∞∑
k=0

Y k
2 ∆b2 +

∞∑
k=0
(Y2 + ∆A2)

i∆A2

∞∑
i=0

Y k
2 ∆b2 −

∞∑
k=0

Y k
2 ∆b1

=

∞∑
k=0

Y k
2 (∆b2 − ∆b1) +

∞∑
k=0
(Y2 + ∆A2)

i∆A2

∞∑
i=0

Y k
2 ∆b2

In the first equation, we treat
∑∞
k=0(Y2 + ∆A2)k∆b2 as an up-

dated PageRank with the update ∆A2 from an original PageRank∑∞
k=0 Y

k
2 ∆b2, then apply Lemma 1. Note that both ∥

∑∞
k=0 Y

k
2 ∥1 and

∥
∑∞
k=0(Y2 +∆A2)k ∥1 have value 1

1−c since the original expressions
with c terms are as follows:

∞∑
k=0

Y k
2 =

∞∑
k=0

ck (Ã⊤w + ∆Awo )
k

∞∑
k=0
(Y2 + ∆A2)

k =

∞∑
k=0

ck (Ã⊤w + ∆Awo + ∆Awn )
k

(Ã⊤w + ∆Awo ) and (Ã⊤w + ∆Awo + ∆Awn ) are column-normalized
stochastic matrices. Then, recovering c from all terms, ∥p′′w ∥1 is
bounded as follow:

∥∆pn − ∆po ∥1
∆t 2

≤ ∥p′′s ∥max

+
1

∆t 2
( ∥∆b2 − ∆b1 ∥1 +

c
1 − c

∥∆A2 ∥1 ∥∆b2 ∥1)

■

Proof of Theorem 2. (Upper bounds of ∥p′w ∥1 and ∥p′′w ∥1 with
AnomalyW) Use Lemma 4, 6 and 8. ■
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