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Abstract—Graph data is ubiquitous in academia and industry,
from social networks to bioinformatics. The pervasiveness of
graphs today has raised the demand for algorithms that can
answer various questions: Which products would a user like
to purchase given her order list? Which users are buying fake
followers to increase their public reputation? Myriads of new
graph mining algorithms are proposed every year to answer such
questions — each with a distinct problem formulation, compu-
tational time, and memory footprint. This lack of unity makes
it difficult for a practitioner to compare different algorithms
and pick the most suitable one for a specific application. These
challenges — even more severe for non-experts — create a gap in
which state-of-the-art techniques developed in academic settings
fail to be optimally deployed in real-world applications.

To bridge this gap, we propose AUTOGM, an automated
system for graph mining algorithm development. We first define a
unified framework UNIFIEDGM that integrates various message-
passing based graph algorithms, ranging from conventional
algorithms like PageRank to graph neural networks. Then
UNIFIEDGM defines a search space in which five parameters
are required to determine a graph algorithm. Under this search
space, AUTOGM explicitly optimizes for the optimal parameter
set of UNIFIEDGM using Bayesian Optimization. AUTOGM
defines a novel budget-aware objective function for the opti-
mization to incorporate a practical issue — finding the best
speed-accuracy trade-off under a computation budget — into the
graph algorithm generation problem. Experiments on real-world
benchmark datasets demonstrate that AUTOGM generates novel
graph mining algorithms with the best speed/accuracy trade-off
compared to existing models with heuristic parameters.

Index Terms—automation, unified framework, optimization

I. INTRODUCTION

Many real-world problems are naturally modeled using
graphs: who-buys-which-products in online marketplaces [28],
who-follows-whom in social networks [19], [30], and protein
relationships in biological networks [4], [24]. Graph mining
provides solutions to practical problems such as classification
of web documents [27], [31], clustering in market segmenta-
tion [22], recommendation in streaming services [2], and fraud
detection in banking [5], [18].

A dizzying array of new graph mining algorithms is intro-
duced every year to solve these real-world problems, giving
rise to the question: Which algorithm should we choose for
a specific application? Graph mining algorithms designed to
solve the same task often have distinct conceptual formula-
tions. Concretely, to estimate the similarity between two nodes
— in social recommender systems for example — classical
graph mining algorithms (like Personalized PageRank [1])

compute similarity scores by iterating a closed-form expres-
sion, while graph neural network algorithms [26] first learn
node embeddings using deep learning, then estimate similarity
scores with a distance metric in this embedding space. This
lack of unity makes it hard for practitioners to determine which
aspect of a method contributes to differences in computation
time, accuracy, and memory footprint — significantly compli-
cating the choice of the algorithm. Currently, selecting a graph
mining algorithm suitable for a specific task among dozens
of candidates is a resource-intensive process requiring expert
experience and brute-force search.

To mitigate the cost and complexity of the algorithm selec-
tion process, the machine learning community has developed
AutoML [9], [17] — which automates the process of algorithm
selection and hyperparameter optimization. The success of
AutoML depends on the size of the search space: it should
be small enough to be tractable in a reasonable amount of
time. However, AutoML techniques cannot be directly applied
to graph mining because the hyperparameter search space is
not even defined due to the lack of unity among graph mining
algorithms.

Hence, in this paper, we first unify various graph mining
algorithms under our UNIFIEDGM framework, then propose
an automated system for graph algorithm development, AU-
TOGM. We target graph algorithms that pass messages —
propagate scores in the PageRank terminology [13], [19]
— along edges to summarize the graph structure into nodes
statistics. UNIFIEDGM manipulates five parameters of the
message passing mechanism: the dimension of the commu-
nicated messages, the number of neighbors to communicate
with (width), the number of steps to communicate for (length),
the nonlinearity of the communication, and the message ag-
gregation strategy. Different parameter settings yield novel
graph algorithms, as well as existing algorithms, ranging
from conventional graph mining algorithms (like PageRank)
to graph neural networks.

AUTOGM leverages the parameter search space defined in
UNIFIEDGM to address a practical problem: given a real-
world scenario, what is the graph mining algorithm with
the best speed/accuracy trade-off? In real-world scenarios,
practitioners optimize performance under a computational
budget [14], [15]. AUTOGM defines a novel budget-aware
objective function capturing the speed/accuracy trade-off, then
maximizes the objective function to find the optimal param-
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Fig. 1: AUTOGM finds novel graph algorithms with the best accuracy/inference time trade-off: (a) Given three accuracy lower bounds
(i.e., 0.58, 0.63, 0.68), AUTOGM generates three novel graph algorithms minimizing inference time. (b) Given three inference time upper
bounds (i.e., 0.004, 0.01, 0.1 seconds), AUTOGM generates three novel graph algorithms maximizing accuracy.

eter set of UNIFIEDGM, resulting in a novel graph mining
algorithm tailored for the given scenario.

The goal of our work is to empower practitioners without
much expertise in graph mining to deploy algorithms tailored
to their specific scenarios. The main contributions of this paper
are as follows:
• Unification: UNIFIEDGM is a unified framework for

message-passing based graph algorithms. UNIFIEDGM pro-
vides the parameter search space necessary to automate
graph mining algorithm development.

• Automation: AUTOGM is an automated system for graph
mining algorithm development. Based on the search space
defined by UNIFIEDGM, AUTOGM finds the optimal graph
algorithm using Bayesian optimization.

• Budget awareness: AUTOGM maximizes accuracy of an
algorithm under a computational time budget, or minimizes
the computational time of an algorithm under a lower bound
constraint on accuracy.

• Effectiveness: AUTOGM finds novel graph mining algo-
rithms with the best speed/accuracy trade-off compared to
existing models with heuristic parameters (Figure 1).

Table I gives a list of symbols and definitions.
Reproducibility: Our code is publicly available 1.

II. BACKGROUND & RELATED WORK

AutoML is the closest line of related work and the main
inspiration for this paper. AutoML algorithms are developed
to automate the process of algorithm selection and hyper-
parameter optimization in the machine learning community.
The most closely related to our work in AutoML is Neural
Architecture Search (NAS), which focuses on the problem of
searching for the deep neural network architecture with the
best performance. The search space includes the number of
layers, the number of neurons, and the type of activation func-
tions, among other design decisions. NAS broadly falls into
three categories: evolutionary algorithms (EA), reinforcement
learning (RL), and Bayesian optimization (BO).

EA-based NAS [7], [12], [16] explores the space of ar-
chitectures by making a sequence of changes (inspired by

1https://github.com/minjiyoon/ICDM20-AutoGM

evolutionary mutations) to networks that have already been
evaluated. In RL-based NAS [32], [33], a recurrent neural
network iteratively decides if and how to extend a neural
architecture; the non-differentiable cost function is optimized
with stochastic gradient techniques borrowed from the RL
literature. Finally, BO-based NAS [9] models the cost function
probabilistically and carefully determines future evaluations to
minimize the total number of evaluated architectures. Since
EA and RL-based NAS need to evaluate a vast number
of architectures to find the optimum, these approaches are
not ideally suited for neural architecture search [9]. On the
other hand, BO emphasizes being cautious in selecting which
architecture to try next to minimize the number of evaluations.
As we discuss later, this makes BO suitable for our problem. In
the following section, we give a brief description of Bayesian
Optimization.

A. Bayesian Optimization

Given a black-box objective function f with domain X , BO
sequentially updates a Gaussian Process prior over f . At time
t, it incorporates results of previous evaluations 1, ..., t−1 into
a posterior P (f |D1:t−1) where D1:t−1 = {x1:t−1, f(x1:t−1)}.
BO uses this posterior to construct an acquisition function
φt(x) that is an approximate measure of evaluating f(x) at
time t. BO evaluates f at the maximizer of the acquisition
function xt = argmaxx∈X φt(x). The evaluation f(xt) is then
incorporated into the posterior P (f |D1:t), and the process is
iterated.

The evaluation point xt chosen by the acquisition function
is an approximation of the maximizer of f . After T iterations,
BO returns the parameter set of the maximum f among
x1:T . When choosing the point xt to evaluate, the acquisition
function φt(x) trades off exploration (sampling from areas of
high uncertainty) with exploitation (sampling areas likely to
offer an improvement over the current best observation). This
cautious trade-off helps to minimize the number of evaluations
of f . More details about BO can be found in [3].

However, these AutoML techniques cannot be directly
applied to graph mining, as they require first formalizing
autonomous algorithm selection as an optimization problem in
a hyperparameter search space. However, before UNIFIEDGM,

https://github.com/minjiyoon/ICDM20-AutoGM


TABLE I: Commonly used notation.

Symbol Definition

G input graph
n,m numbers of nodes and edges in G
A (n× n) binary adjacency matrix of G
d0 dimension of input feature vectors
d dimension of communicated messages
k number of message passing steps
w number of neighbors sampled per node
l binary indicator for nonlinearity
a categorical aggregation strategy
X0 (n× d0) input feature vectors
Xi (n× d) i-th layer message vectors (i = 1 . . . k)
W1 (d0 × d) 1st layer transformation matrix
Wi (d× d) i-th layer transformation matrix

(i = 2 . . . k)

φ(x)

{
ReLU(x) if l = True
x otherwise

the hyperparameter search space for graph mining was not
even defined due to the lack of unity among algorithms. Hence,
our proposed UNIFIEDGM and AUTOGM allow the graph
mining field to exploit state-of-the-art techniques developed
in AutoML.

III. UNIFIED GRAPH MINING FRAMEWORK

In this section, we first motivate the message passing
scheme (Section III-A). We then propose our unified frame-
work UNIFIEDGM (Section III-B), explain how existing algo-
rithms fit in the framework (Section III-C), and further analyze
how UNIFIEDGM bridges the conceptual gap between conven-
tional graph mining and graph neural networks (Section III-D).
Finally, we outline how to choose parameters of UNIFIEDGM
given a specific scenario (Section III-E).

A. Message Passing

A goal common to many graph mining algorithms is
to answer queries at the node level (e.g., node clustering,
classification, or recommendation) based on global graph
information (e.g., edge structure and feature information from
other nodes). To transmit the information necessary to answer
such queries, in classical graph mining algorithms, nodes
propagate scalar scores to their neighbors, while in graph
neural networks, nodes aggregate feature vectors from their
neighbors. In short, both families of algorithms pass messages
among neighbors: scalars or vectors, inbound or outbound.
The intuition behind these message passing algorithms is that
whatever the task at hand, connectivity/locality matters: con-
nected/nearby nodes are more similar (clustering), informative
(classification), or relevant (recommendation) to each other
than disconnected/distant nodes. Our unified framework targets
graph algorithms that use the message passing mechanism.

B. UNIFIEDGM

We propose a unified framework UNIFIEDGM for graph
mining algorithms that employ the message passing scheme.
UNIFIEDGM defines the message passing mechanism based
on five parameters:
• Dimension d ∈ Z>0 of passed messages. If d = 1, mes-

sages are scalar scores, otherwise they are d-dimensional
embedding vectors.
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Fig. 2: UNIFIEDGM defines the message passing mechanism based
on five parameters: the dimension d, length k, width w, nonlinearity
l, and aggregation strategy a.

• Width w ∈ Z∪{−1} decides the number of neighbors each
node communicates with. If w = −1, nodes communicate
with all their neighbors.

• Length k ∈ Z decides the number of message passing steps.
• Nonlinearity l ∈ {True,False} decides whether to use

nonlinearities in the message passing or not.
• Aggregation strategy a decides if a node sends a message

to itself and how to normalize the sum of incoming mes-
sages.

Figure 2 shows how each parameter regulates message passing
under UNIFIEDGM.

The input of UNIFIEDGM is a graph G = (V,E) and a
matrix X0 of size (n × d0) containing d0-dimensional initial
node statistics for all n nodes — either scalar scores or feature
vectors. Note that d0 could be different from d, the dimension
of the passed messages. The output of UNIFIEDGM is a
set of d-dimensional node embeddings. These embeddings
contain information from the node’s neighborhood and can
be exploited in an output layer which is specialized to a given
application (e.g., a logistic regression for node classification.)

Algorithm 1 outlines how UNIFIEDGM passes messages
across a graph based on a set of five parameters (d, k, w, l, a).
UNIFIEDGM first initializes node statistics (line 1), then iter-
atively passes messages among neighboring nodes k times. In
the i-th message passing step, UNIFIEDGM randomly samples
w neighbors to communicate with for each node (line 3) and
aggregates messages from sampled neighbors with a strategy
decided by the parameter a (lines 4 and 5). Then UNIFIEDGM
transforms the aggregated messages linearly with a matrix Wi

(line 6) and finally passes them through a function φ decided
by the parameter l (line 7).

Let us explain in further detail the neighbor sampling and
message aggregation steps. Neighbor sampling (line 3) can
be expressed as generating a matrix Asamp = Sample(A)
by randomly zeroing out entries of the binary adjacency
matrix A. Message aggregation (lines 4 and 5) is defined
by the aggregation strategy a ∈ {SA, SS, SN, NA, NS,
NN}. The first letter in {S, N} determines whether a node
sends a message to itself or not (Self-loop or No-self-loop).
The second letter in {A, S, N} determines how to normalize
the sum of incoming messages (Asymmetric, Symmetric, or
No-normalization). Each aggregation strategy a results in an



Algorithm 1: UNIFIEDGM Algorithm
Require: initial node statistics X0, binary adjacency matrix A
Ensure: node embeddings Xk

1: Initialize node statistics X0

2: for message passing step i = 1; i ≤ k; i++ do
3: Sample neighbors for each node: Asamp ← Sample(A)
4: Generate aggregation matrix: Aagg ← Aggregate(Asamp)
5: Aggregate messages Xi ← AaggXi−1

6: Multiply with transformation matrix: Xi ← XiWi

7: Pass through nonlinear function:

Xi ← φ(Xi) =

{
ReLU(Xi) if l = True
Xi otherwise

8: end for
9: return Xk

aggregation matrix Aagg = Aggregate(Asamp), explained in
Table II. Multiplying messages Xi−1 from the previous step
by the matrix Aagg corresponds to aggregating messages from
neighboring nodes.

Letting fi denote the ith layer of message passing, we can
summarize UNIFIEDGM as follows:

Asamp = Sample(A)

Aagg = Aggregate(Asamp)

Xk = fk(Xk−1) = φ(AaggXk−1Wk)

= fk(fk−1(. . . f1(X0)))

X0 is the (n× d0) matrix of initial statistic vectors, Xi is the
(n × d) matrix of statistic vectors at step i for (i = 1 . . . k).
W1 and Wi are (d0 × d) and (d× d) transformation matrices
respectively (i = 2 . . . k).

C. Reproduction of Existing Algorithms

In this section, we introduce the most popular graph mining
algorithms exploiting the message passing scheme and show
how they can be presented under UNIFIEDGM. Table III shows
how to set initial node statistics and parameters (d, k, w, l, a)
of UNIFIEDGM to reproduce the original graph algorithms.

PageRank [19] scores nodes in a graph based on their
global relevance/importance, and was initially used by Google
for webpage recommendation. PageRank initializes all n nodes
in the graph with a score of 1

n . Then, every node iteratively
propagates its score across the graph with a decay coefficient
0 < c < 1 to ensure convergence. Under UNIFIEDGM,
PageRank propagates scalar scores (d = 1) to all neighbors
(w = −1) with no nonlinear unit (l = False) until scores have
converged (k = ∞), and aggregates messages with no self-
loop and asymmetric normalization (a = NA). Note that the
(d× d) transformation matrix W in UNIFIEDGM becomes a
scalar value and corresponds to the decay coefficient c.

Personalized PageRank (PPR) [1] and Random Walk
with Restart (RWR) [29], [30] build on PageRank to estimate
the relevance of nodes in the perspective of a specific set of
seed nodes thus enable personalized recommendation. Under
UNIFIEDGM, the only difference of PPR/RWR from PageR-
ank is the initial node scores: RWR/PPR place varying positive
scores on the set of seed nodes and zero scores on others.
PPR/RWR have the same set of (d, k, w, l, a) as PageRank.

TABLE II: The aggregation strategy a decides if a node sends a
message to itself or not (Self-loop or No-self-loop) and how to nor-
malize the sum of incoming messages (Asymmetric, Symmetric, or
No-normalization). Each combination corresponds to an aggregation
matrix Aagg = Aggregate(A) in the table. Notation: n is the number
of nodes in a graph, A is a (n× n) binary adjacency matrix, D is a
(n× n) diagonal matrix where Dii =

∑
j Aij , and In is an identity

matrix of size n.

Self-loop (S) No-self-loop (N)

Asymmetric (A) D−1(A+ In) D−1A

Symmetric (S) D−1/2(A+ In)D−1/2 D−1/2AD−1/2

No-normalization (N) (A+ In) A

Pixie [6], introduced by Pinterest, complements the ideas of
PPR and RWR with neighbor sampling to deal with billions
of nodes in real-time. Pixie fixes the number of message
passing operations and stays within a computation budget. To
reproduce this under UNIFIEDGM, Pixie fixes the product of
k and w to a constant number (e.g., 2, 000 from [6]): after k is
sampled, w is decided as 2,000

k . Pixie has the same initial node
statistics and parameter d = 1 and l = False with PPR/RWR.
For the parameter a, Pixie sums up scores from the sampled
neighbors (NN: no self-loop and no normalization).

Graph Convolutional Networks (GCNs) [11] are a vari-
ant of Convolutional Neural Networks that operates directly
on graphs. GCNs stack layers of first-order spectral filters
followed by a nonlinear activation function to learn node
embeddings. Under UNIFIEDGM, given node feature vectors
as initial node statistics, GCN passes message vectors (d = 64)
to all neighbors (w = −1) with nonlinear units (l = True)
across two-layered networks (k = 2) and aggregates messages
with a self-loop and symmetric normalization (a = SS).

GraphSAGE [8] extends GCN with neighbor sampling.
GraphSage with a mean aggregator averages statistics of
a node and its sampled neighbors. Under UNIFIEDGM,
GraphSAGE-mean has the same parameters as GCN except w
and a. GraphSAGE-mean samples a fixed number of neighbors
to communicate with (w = 25) and normalizes the aggregated
messages asymmetrically (a = SA).

Simplified GCN (SGCN) [25] reduces the excess com-
plexity of GCN by removing the nonlinearities between GCN
layers and collapsing the resulting function into a single linear
transformation. With fewer parameters to train, SGCN is com-
putationally more efficient than GCN but shows comparable
performance on various tasks. Under UNIFIEDGM, SGCN has
the same parameters with GCN except l. SGCN does not use
any nonlinear unit (l = False).

Table III presents the original message passing equations of
the existing graph algorithms. Those equations can be fully
reproduced from Algorithm 1 with the proper inital node
statistics and parameter sets listed in Table III.

D. Conventional GM vs. GNNs

As shown, conventional graph algorithms (e.g., PPR, RWR,
Pixie) and recent GNNs are unified under UNIFIEDGM. How-
ever, before this work, these algorithms were not analyzed in
the same framework. What has prevented them from being
combined? Two main differences — the use of node feature



TABLE III: Graph mining algorithms can be fully reproduced under UNIFIEDGM with the respective initial node statistics and parameters
(d, k, w, l, a). Notation: n is the number of nodes, A denotes an (n × n) binary adjacency matrix, D denotes an (n × n) diagonal matrix
where Dii =

∑
j Aij , In denotes an identity matrix of size n, N(u) denotes the set of sampled neighbors of node u, and 0 < c < 1 is a

decay coefficient. For PageRank, see the formulation given in [30].

Algorithm Original message passing equation Initial node statistics d k w l a

PageRank [19] Xk = c(D−1A)Xk−1
1
n

for all nodes 1 ∞ -1 False NA
Pixie [6] Xk(u) =

∑
v∈N(u)Xk−1(v) 1 for seeds, 0 others 1 sample 2000

k
False NN

GCN [11] Xk = ReLU
(
(D−

1
2 (A+ In)D

− 1
2 )Xk−1Wk

)
feature vectors 64 2 -1 True SS

GraphSAGE [8] Xk(u) = ReLU
(

1
|N(u)|+1

∑
v∈N(u)∪uXk−1(v)Wk

)
feature vectors 64 2 25 True SA

SGCN [25] Xk = D−
1
2 (A+ In)D

− 1
2Xk−1Wk feature vectors 64 2 -1 False SS

information and trainability — are the culprits. While GNNs
exploit additional node feature information and labels with
semi-supervised learning, conventional graph algorithms do
not. We analyze this apparent gap and show how UNIFIEDGM
reconciles both families of algorithms.

Node feature information: Conventional graph algorithms
do not exploit node features, but instead, choose a set of seed
nodes to initialize with scores suitable for a given application.
Under UNIFIEDGM, these algorithms are also applicable with
node features by maintaining the same values for parameters
(d = 1, k, w, l, a), but setting initial input dimension d0 to be
the input feature dimension and using a 1st layer tranformation
matrix W1 of size (d0 × 1). This would yield a new version
of PageRank or PPR that exploits feature information.

Semi-supervised learning: In GNNs, the transformation
matrix W is trained with semi-supervised learning using node
labels. On the other hand, conventional graph algorithms do
not have a training phase in advance of an inference phase.
However, conventional algorithms are trainable: the decay
coefficient c in PageRank, PPR, and RWR corresponds to an
(1×1) transformation matrix W under UNIFIEDGM. Because
of its low dimension, the (1×1) transformation matrix could be
set heuristically (e.g., c = 0.85 in PageRank). But we could
use label information to train this (1 × 1) matrix W with
gradient descent as we train it in GNNs.

In our experiments, we show how to train conventional
algorithms (PageRank and Pixie) with feature information.

E. Parameter Selection

We explain the effects of parameters (d, k, w, l, a) on the
performance of graph algorithms and how to choose the proper
parameters by illustrating the existing algorithm design.

• Dimension d: High dimensions of messages enrich the
expressiveness of graph algorithms by sacrificing speed. If
an application prioritizes fast and simple algorithms, scalar
messages (e.g., d = 1 in Pixie) are suitable. In contrast,
when applications prioritize rich expressiveness of messages
and accuracy, high dimensional vectors (e.g., d = 64 in
GNNs) are more appropriate.

• Length k: k decides the size of neighborhood where a
graph algorithm assumes locality — where nearby nodes
are considered informative. For instance, GCNs assume that
a small neighborhood is relevant (k = 2). However, when
there are label sparsity issues, GNNs propagate toward large
scopes (k = 7) to transmit label information from distant

nodes. Large k results in a long computation time but does
not guarantee a high accuracy.

• Width w: Large w lets algorithms aggregate information
from more neighbors, leading to a possible increase in
accuracy. At the same time, large w requires more message
passing operations, resulting in longer computation time.
In graphs with billions of nodes, like the Pinterest social
network, small w is necessary to answer queries in real-
time (as done by Pixie).

• Nonlinearity l: Nonlinearities enhance the expressiveness
of graph algorithms at the cost of speed. They are suitable
for anomaly detection systems that require high accuracy
(e.g., GNNs for infection detection in medical applications).
In contrast, omitting nonlinearity is appropriate for fast
recommender systems in social networks (e.g., Pixie in
Pinterest).

• Aggregation strategy a: The self-loop decides whether a
node processes its own embedding during message passing.
GNNs include a self-loop to complement a node’s features
with information from its neighborhood. Conversely, PageR-
ank and RWR do not include a self-loop as they want
to spread information from a source node to the rest of
the graph to figure out the graph structure. Normalization
prevents numerical instabilities and exploding/vanishing
gradients in GNNs.

In our experiments, we explore how the five parameters affect
the performance of graph algorithms empirically.

IV. AUTOMATION OF GRAPH MINING ALGORITHM
DEVELOPMENT

With the proper parameter selection, UNIFIEDGM could
output a graph algorithm tailored for a specific application.
However, the parameter selection process still relies on the
intuition and domain knowledge of practitioners, which would
prevent non-experts in graph mining from fully exploiting
UNIFIEDGM. How can we empower practitioners without
much expertise to deploy customized algorithms? We intro-
duce AUTOGM, which generates an optimal graph algorithm
autonomously given a user’s scenario.

When designing an algorithm for an application, we need to
consider two primary metrics: computation time and accuracy,
which usually trade off each other. Take, for example, a
developer who aims to develop an online recommender system
that makes personalized recommendations to a large number
of users at the same time. At first, she employs a state-of-
the-art GNN model (in terms of accuracy) but finds that the



computation time is too long for her application. Then the
developer seeks an alternative simple graph algorithm that runs
faster than a time budget by sacrificing accuracy. AUTOGM
incorporates this practical issue of finding the best speed-
accuracy trade-off into the graph algorithm generation prob-
lem. AUTOGM answers two questions: 1) given the maximum
acceptable computation time, which graph algorithm maxi-
mizes accuracy? 2) given minimum accuracy requirements,
which graph algorithm minimizes computation time?

We first formalize our budget-aware graph algorithm gener-
ation problem as a constrained optimization problem. Then
we replace the constrained problem with an unconstrained
optimization problem using barrier methods (Section IV-A).
We explain why Bayesian optimization is well-suited for
this unconstrained problem (Section IV-B). Finally, we de-
scribe how AUTOGM solves the optimization problem using
Bayesian optimization (Section IV-C).

A. Budget-aware objective function

Letting x denote a graph algorithm, g(x) and h(x) indicate
the computation time and accuracy of x, respectively. Then an
optimal graph algorithm generation problem with an accuracy
lower bound hmin is presented as a constrained optimization
as follows:

xopt = argminx g(x) subject to h(x)− hmin ≥ 0 (1)
One of the common ways to solve a constrained optimization
problem is using a barrier method [23], replacing inequality
constraints by a penalizing term in the objective function. We
re-formulate the original constrained problem in Equation 1
as an equivalent unconstrained problem as follows:

xopt = argminx g(x) + Ih(x)−hmin≥0(x) (2)
where the indicator function Ih(x)−hmin≥0(x) = 0 if h(x) −
hmin ≥ 0 and ∞ if the constraint is violated. Equation 2
eliminates the inequality constraints, but introduces a discon-
tinuous objective function, which is challenging to optimize.
Thus we approximate the discontinuous indicator function
with an optimization-friendly log barrier function. The log
barrier function, defined as − log(h(x)−hmin) is a continuous
function whose value on a point increases to infinity (− log 0)
as the point approaches the boundary h(x)− hmin = 0 of the
feasible region. Replacing the indicator function with the log
barrier function yields the following optimization problem:

fGM (x) = g(x)− λ log(h(x)− hmin) (3)
xopt = argminx fGM (x) (4)

fGM is our novel budget-aware objective function and λ > 0
is a penalty coefficient. Equation 4 is not equivalent to our
original optimization problem, Equation 1. However, as λ
approaches zero, it becomes an ever-better approximation (i.e.,
−λ log(h(x) − hmin) approaches Ih(x)−hmin≥0(x)) [23]. The
solution of Equation 4 ideally converges to the solution of the
original constrained problem. Now, our budget-aware graph
algorithm generation problem is formulated as a minimization
problem of fGM .

Given a minimum accuracy constraint accmin, we set
g(x) = time to minimize and h(x)−hmin = acc−accmin ≥ 0

Algorithm 2: AUTOGM Algorithm
Require: minimum accuracy (or maximum inference time)

constraint, target dataset, BO search budget
Ensure: a graph algorithm (i.e. five parameters of UNIFIEDGM)

1: for iteration i = 1; i < BO search budget; i++ do
2: Choose a point (d, k, w, l, a) to evaluate
3: Generate a graph mining algorithm A from (d, k, w, l, a)
4: Train A on the training set
5: Evaluate A and measure acc, time on the validation set
6: Evaluate fGM (acc, time) and update posterior of fGM

7: end for
8: return a parameter set with the minimum fGM

as a constraint. On the other hand, given a maximum inference
time constraint timemax, we want to maximize accuracy while
observing the time constraint. Then we set g(x) = −acc to
minimize and h(x) − hmin = timemax − time ≥ 0 as a
constraint.

B. Bayesian optimization

Under UNIFIEDGM, a graph algorithm x is defined by
a set of parameters (d, k, w, l, a). Then search space X for
the optimization problem becomes a five-dimensional space
of parameters (d, k, w, l, a). Suppose we set cardinalities for
each parameter as 300, 30, 50, 2, and 6, respectively (i.e.,
0 < d ∈ Z ≤ 300, 0 < k ∈ Z ≤ 30, 0 < w ∈ Z ≤ 50, l ∈
{True, False}, a ∈ {NA,NS,NN,SA, SS, SN}). Then
the number of unique architectures within our search space is
300×30×50×2×6 = 5.4×106, which is quite overwhelming.
Moreover, training and validating a graph algorithm, especially
on large datasets, takes significant time. Thus it is impractical
to search the space X exhaustively. Most importantly, even if
we could measure the computation time and accuracy (g(x)
and h(x)) of a graph algorithm and calculate the objective
function fGM (x) = g(x) − λ log(h(x) − hmin), we do not
know the exact closed-form of fGM (x) = fGM (d, k, w, l, a)
in terms of the parameters (d, k, w, l, a) nor its derivatives.
Thus, we cannot exploit classical optimization techniques
that use derivative information. To cope with these problems
— expensive evaluation and no closed-form expression nor
derivatives — which optimization technique is appropriate?

Bayesian optimization (BO) [3] is the most widely-used
approach to find the global optimum of a black-box cost
function — a function that we can evaluate but for which we
do not have a closed-form expression or derivatives. Also, BO
is cost-efficient with as few expensive evaluations as possible
(more details in Section II-A). Therefore BO is well-suited to
our problem to find the best parameter set (d, k, w, l, a) given
the expensive black-box objective function fGM (x).

C. AUTOGM

Users supply three inputs to AUTOGM: 1) a budget con-
straint (the minimum accuracy or maximum computation
time), 2) a target dataset on which they want an optimized
algorithm — containing a graph, initial node scores, and labels
for supervised learning — and 3) a search budget for Bayesian
Optimization. The search budget is given as the total number



of evaluations in BO. Then AUTOGM outputs the optimal
graph mining algorithm (i.e., parameter set of UNIFIEDGM).

Algorithm 2 outlines how AUTOGM works. Until it has
exhausted its search budget, AUTOGM repeats the process:
1) Pick a point x = (d, k, w, l, a) ∈ X to evaluate using
an acquisition function of BO (line 2) then generate a graph
algorithm A from parameters (d, k, w, l, a) (line 3). 2) Train
A on the training set (line 4) and measure accuracy and
inference time of A on the validation set (line 5). 3) Evaluate
the objective function fGM given the accuracy and inference
time of A, then update a posterior model for fGM in BO
(line 6). After all iterations, AUTOGM returns the parameter
set x = (d, k, w, l, a) with the minimum fGM among the
evaluated points.

The search space of AUTOGM is not affected by the
input but fixed to a five-dimensional space of parameters
(d, k, w, l, a). The search time of AUTOGM is determined
by the BO search budget (total number of evaluations) and
evaluation time. Since the evaluation time of a graph algorithm
is often proportional to the input dataset’s size, the total search
time of AUTOGM is decided by the dataset. BO’s minimiza-
tion of the number of evaluations is especially efficient for
large datasets which result in the long evaluation time. Our
main contribution is defining the graph algorithm generation
problem as an optimization problem on a novel search space.

V. EXPERIMENTS

In this section, we evaluate the performance of AUTOGM
compared to existing models with heuristic parameters. We
aim to answer the following questions:
• Q1. Effectiveness of AUTOGM: Do algorithms found

by AUTOGM outperform their state-of-the-art competitors?
Given an upper bound on inference time/a lower bound on
accuracy, does AUTOGM find the algorithm with the best
accuracy/the fastest inference time? (Section V-B)

• Q2. Search efficiency of AUTOGM: How long does
AUTOGM take to find the optimal graph algorithm? How
efficient it is compared to random search? (Section V-C)

• Q3. Effect of UNIFIEDGM parameters: How do parame-
ters (d, k, w, l, a) affect the accuracy and inference time of
a graph mining algorithm? (Section V-D)

A. Experimental Setting

We evaluate the performance of graph mining algorithms
on a semi-supervised node classification task. All experiments
were conducted on identical machines using the Amazon EC2
service (p2.xlarge with 4 vCPUs, 1 GPU and 61 GB RAM).
Dataset: We use the three citation networks (Cora, Citeseer,
and Pubmed) [20], two Amazon co-purchase graphs (Amazon
Computers and Amazon Photo) [21], and two co-authorship
graphs (MS CoauthorCS and MS CoauthorPhysics) [21]. We
report their statistics in Table IV.
Baseline: Our baselines are PageRank [19], Pixie [6],
GCN [11], GraphSage [8], and SGCN [25]. We generate each
algorithm under UNIFIEDGM by setting the five parameters
as follows:

TABLE IV: Dataset statistics: AmazonC and AmazonP denote the
Amazon Computer and Amazon Photo datasets, respectively. CoauthorC
and CoauthorP denote the MS Coauthor CS and Physics, repectively.

Dataset Node Edge Feature Label Train/Val/Test

Cora 2,485 5,069 1,433 7 140/500/1,000
Citeseer 2,110 3,668 3,703 6 120/500/1,000
Pubmed 19,717 44,324 500 3 60/500/1,000
AmazonC 13,381 245,778 767 10 410/1,380/12,000
AmazonP 7,487 119,043 745 8 230/760/6,650
CoauthorC 18,333 81,894 6,805 15 550/1,830/15,950
CoauthorP 34,493 247,962 8,415 5 1,030/3,450/30,010

• PageRank: d = 1, k = 30, w = −1, l = False, a = NA
• Pixie: d = 1, k = 10, w = 25, l = False, a = NN
• GCN: d = 64, k = 2, w = −1, l = True, a = SS
• GraphSAGE: d = 64, k = 2, w = 25, l = True, a = SA
• SGCN: d = 64, k = 2, w = −1, l = False, a = SS

When w is larger than the number of neighbors, we sample
neighbors with replacement. For PageRank and Pixie, the
original algorithms output the sum of intermediate scores that
each node receives (

∑
Xi), but we use only the final scores

Xk in our experiments. The goal of our experiments is to
compare PageRank and Pixie with other algorithms in terms
of their main features in UNIFIEDGM: their low dimension
(d = 1) and Pixie’s sampling strategy (w = 25).
Bayesian optimization: We use an open-sourced Bayesian
optimization package2. For the parameters d, k, and w which
take integer values, we round the real-valued parameters
chosen by BO to integer values. For the parameter l and
a, which take boolean and categorical values, we bound the
search space (0 < l < 1and 0 < a < 6), round the real-
valued parameters chosen by BO to the closest integer values,
and map (0: False, 1: True, 0: NN, 1: NS, 2: NA, 3: SN,
4: SS, 5: SA). We set the BO search budget (total number of
evaluations) as 20 for all datasets. The resulting search time of
each dataset is reported in Table VI. For the penalty coefficient
λ, the smaller λ brings the tighter budget constraints. To make
our budget constraints strict, we set λ as 10−19.

We use the Adam optimizer [10] and tune each baseline
with a grid search on each dataset. Most baselines perform
best on most datasets with a learning rate of 0.01, weight
decay of 5 × 10−4, and dropout probability of 0.5. We fix
these parameters in our autonomous graph mining algorithm
search through Bayesian Optimization. We report the average
performance across 10 runs for each experiment.

B. Effectiveness of AUTOGM

In this section, we demonstrate how AUTOGM trades off
accuracy and inference time in practice. We compare the
best algorithms found by AUTOGM with baselines in terms
of accuracy and inference time. For each dataset, we run
AUTOGM with three different accuracy lower bounds and
three inference time upper bounds, as illustrated in Figures 1
and 3. For each constraint, AUTOGM generates a novel
graph algorithm corresponding to a set of five parameters of
UNIFIEDGM. For space efficiency, we show the result on the

2https://github.com/fmfn/BayesianOptimization
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Fig. 3: AUTOGM finds the algorithms with the best accuracy/inference time trade-off on the Cora and Pubmed datasets: given three
different accuracy/inference time constraints 1, 2, 3, AUTOGM generates three novel graph algorithms, AUTOGM-1, 2, 3, respectively.

TABLE V: Parameters corresponding to algorithms found by AU-
TOGM in Figures 1. The Budget column denotes the constraint input
to AUTOGM to generate an algorithm.

Dataset Budget d k w l a Time Acc

Citeseer

t<0.004 70 4 25 F SA 0.0039 0.674
t<0.01 255 4 45 F SS 0.004 0.683
t<0.1 68 1 47 T SS 0.0134 0.686
a>0.58 138 1 36 F SA 0.0039 0.622
a>0.63 25 4 54 F NA 0.0039 0.665
a>0.68 39 1 10 T SS 0.0121 0.69

Cora, Citeseer, and Pubmed datasets. Performance on other
datasets is reported in Table VI.

Among algorithms satisfying an accuracy lower bound, the
algorithms generated by AUTOGM show the best trade-off
between accuracy and inference time. For instance, in the
Citeseer dataset in Figure 1(a), AUTOGM-2 has the fastest
inference time above accuracy constraint 2 among PageR-
ank (PR), GCN, SGCN, and GraphSage. Given the highest
or tightest accuracy constraint 3, only AUTOGM-3 satisfies
it. Conversely, among algorithms satisfying inference time
upper bounds, the algorithms generated by AUTOGM have
the highest accuracy. For instance, in the Pubmed dataset in
Figure 3(d), AUTOGM-1 has the highest accuracy below time
constraint 1 among PR, Pixie, and SGCN. Given the most
generous time constraint 3, AUTOGM-3 achieves the highest
accuracy among all algorithms.

The empirical performance of our baselines is consis-
tent with our guidelines for how to choose the parameters
(d, k, w, l, a) in Section III-E. PageRank and Pixie achieve fast
inference time with a low dimension of messages (d = 1)

and no nonlinearities (l = False), but sacrifice accuracy. Pixie
underperforms because it is the only algorithm where mes-
sages are aggregated without normalization. This aggregation
strategy is not well-suited to our semi-supervised node classifi-
cation task because it leads to node embeddings monotonically
increasing with every aggregation step. GCN and GraphSage
achieve high accuracy with a high dimension of messages
(d = 64) and nonlinearities (l = True) at the cost of a high
inference time. SGCN removes nonlinearities (l = False) to
decrease the inference time while maintaining high accuracy.

Table V shows the parameter set of UNIFIEDGM that corre-
sponds to the algorithms found by AUTOGM on the Citeseer
dataset. When encouraged to find higher accuracy algorithms
(through a larger time upper bound or higher accuracy lower
bound), AUTOGM is likely to use high values of d and w
and nonlinearities (l = True). For instance, AUTOGM chooses
higher values d = 255, w = 45 for the larger time upper bound
time < 0.01 than the values d = 70, w = 25 for the bound
time < 0.004. With the largest upper bound time < 0.1,
AUTOGM chooses l = True to use nonlinearities. This
result is consistent with our intuition over the parameter
selection in Section III-E. Vastly different parameter sets for
each algorithm in Table V show that AUTOGM searches the
parameter space beyond human intuition, which underlines the
value of autonomous graph mining algorithm development.

C. Search efficiency of AUTOGM
AUTOGM searches for the optimal graph algorithm in a

five-dimensional space (d, k, w, l, a) defined by UNIFIEDGM.
To show the search efficiency of AUTOGM, we give the



TABLE VI: Search efficiency of AUTOGM: given the same search time (column 2) and accuracy lower bounds (column 3), AUTOGM finds
faster algorithms than RandomSearch across all datasets; similarly, given the same search time (column 2) and inference time upper bounds
(column 8), AUTOGM finds more accurate algorithms than RandomSearch across all datasets.

Fastest Inference (s) Accuracy Highest Accuracy Inference (s)
Dataset Search(s) Min.Acc. AutoGM Random AutoGM Random Max.Time(s) AutoGM Random AutoGM Random

Cora 450 0.78 0.0034 - 0.79 - 0.004 0.77 0.77 0.0036 0.0033
Citeseer 800 0.67 0.0039 0.0039 0.67 0.67 0.004 0.67 - 0.0039 -
Pubmed 1,800 0.75 0.021 - 0.77 - 0.004 0.76 0.71 0.0036 0.0039
AmazonC 5,700 0.85 0.032 0.033 0.89 0.87 0.04 0.85 - 0.032 -
AmazonP 18,000 0.93 0.047 0.065 0.94 0.93 0.05 0.94 - 0.048 -
CoauthorC 2,500 0.8 0.015 0.016 0.8 0.82 0.02 0.83 0.75 0.015 0.02
CoauthorP 1,500 0.9 0.01 - 0.91 - 0.01 0.92 0.86 0.01 0.01

same maximum search time and budget constraints to AU-
TOGM and RandomSearch, then compare the performance of
the best graph algorithms each method finds. RandomSearch
samples each parameter (d, k, w, l, a) randomly and defines
a graph algorithm based on the sampled parameters. We set
the maximum search time proportional to the size of the
dataset. The budget constraints are chosen based on the best
performance among the baseline methods (PageRank, Pixie,
GCN, GraphSage, SGCN). We select the tightest constraints
(i.e., fastest inference time and highest accuracy among the
baselines) to examine the search efficiency.

Table VI shows the inference time and accuracy of the
optimal graph algorithms AUTOGM and RandomSearch find.
RandomSearch fails to find any algorithm satisfying the given
accuracy constraints on the Cora, Pubmed, and CoauthorP
datasets. It also fails to find any algorithm satisfying the in-
ference time constraints on the Citeseer, AmazonC, and Ama-
zonP datasets. When RandomSearch finds graph algorithms
satisfying the given constraints, their performance is still lower
than the algorithms found by AUTOGM. For instance, given
the inference time upper bound (t < 0.02) on the CoauthorC
dataset, AUTOGM finds an algorithm with accuracy 0.83 while
RandomSearch finds an algorithm with accuracy 0.75.

Table VI presents how much accuracy/inference time is used
under the given budgets to find the optimal graph algorithms
(column 6, 7 and 11, 12). AUTOGM generates algorithms
whose accuracy (time) is as close as possible to the given
accuracy (time) budgets. For instance, AUTOGM finds the
fastest graph algorithm with an accuracy of 0.8 when the
accuracy lower bound is given as 0.8 on the CoauthorC
dataset. By exhausting the budget, AUTOGM improves the
target metric time (accuracy) and brings the best trade-off
between computation time and accuracy.
D. Effect of UNIFIEDGM parameters

In this section, we investigate the effects of parameters of
UNIFIEDGM on the performance of a graph mining algorithm.
Given a set of parameters (d = 64, k = 2, w = −1, l = True, a =

SS), we vary one parameter while fixing the others and
measure the performance of the generated algorithm. For the
experiment where we vary the aggregation parameter a, we use
a different set of parameters (d = 16, k = 2, w = 10, l = False)
to better illustrate changes in accuracy and inference time. For
brevity, we show the result on the Pubmed dataset.
• Dimension d: Figure 4(a) shows that inference time in-

creases linearly with d, while accuracy increases only until
d > 20. For the Pubmed dataset, 20-dimensional messages
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Fig. 4: Effects of the five parameters (d, k, w, l, a) of UNIFIEDGM
on the performance of graph algorithms (i.e. accuracy and time).

are expressive enough that the accuracy stops increasing.
Larger datasets would likely benefit from higher dimen-
sional messages.

• Length k: In Figure 4(b), when k increases, inference time
increases linearly, but accuracy decreases for k > 3. The
decrease in accuracy is due to oversmoothing: repeated
graph aggregations eventually make node embeddings in-
distinguishable.

• Width w: In Figure 4(c), when w increases, inference time
increases until w > 15, but accuracy does not change
noticeably. The plateau in accuracy is due to most nodes
having few neighbors and nearby nodes sharing similar
feature information, which makes a single sampled node
be a representative of a node’s whole neighborhood. The



plateau in inference time indicates that nodes have fewer
than 15 neighbors on average on the Pubmed dataset.

• Nonlinearity l: Figure 4(d) shows that adding nonlinearities
(l = True) increases accuracy due to richer expressiveness,
but also inference time.

• Aggregation strategy a: Figure 4(e) shows that the choice
of aggregation strategy a has a considerable effect on the
accuracy of a graph mining algorithm. Still, we cannot
conclude that any aggregation strategy is always superior
to others.

Figure 4 shows the general tendency in the effects of the
parameters. Different datasets have slightly different results
(e.g., which w stops increasing accuracy or which k starts
bringing oversmoothing). This shows the need for AUTOGM,
which chooses the best parameter set automatically for the
dataset we employ.

VI. CONCLUSION & FUTURE WORK

In this paper, we introduce an automated system AUTOGM
for graph mining algorithm development. Our main contribu-
tions are:
• Unification: UNIFIEDGM allows conventional and GNN

algorithms to be unified in the same framework for the first
time, which is necessary to establish the parameter space
for algorithm search.

• Automation: Based on the search space defined by UNI-
FIEDGM, AUTOGM finds the optimal graph algorithm
using Bayesian optimization.

• Budget awareness: AUTOGM maximizes the performance
of an algorithm under a given time/accuracy budget.

• Effectiveness: AUTOGM finds novel graph algorithms with
the best speed/accuracy trade-off on real-world datasets.

We hope this paper will spark further research in this direction
and empower practitioners without much expertise in graph
mining to deploy graph algorithms tailored to their scenarios.
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