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Abstract
The pervasiveness of graphs today has raised the demand for algorithms to answer various
questions: Which products would a user like to purchase given her order list? Which users
are buying fake followers? Myriads of new graph algorithms are proposed every year to
answer such questions—each with a distinct problem formulation, computational time, and
memory footprint. This lack of unity makes it difficult for practitioners to compare different
algorithms and pick the most suitable one for their application. These challenges create a gap
in which state-of-the-art techniques developed in academia fail to be optimally deployed in
real-world applications. To bridge this gap, we propose AutoGM, an automated system for
graph mining algorithm development. We first define a unified framework UnifiedGM for
message-passing-based graph algorithms. UnifiedGM defines a search space in which five
parameters are required to determine a graph algorithm. Under this search space, AutoGM
explicitly optimizes for the optimal parameter set of UnifiedGM using Bayesian Optimiza-
tion. AutoGM defines a novel budget-aware objective function for the optimization to find
the best speed-accuracy trade-off in algorithms under a computation budget. On various real-
world datasets, AutoGM generates novel graph algorithms with the best speed/accuracy
trade-off compared to existing models with heuristic parameters.
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1 Introduction

Many real-world problems are naturally modeled using graphs: who-buys-which-products
in online marketplaces [45], who-follows-whom in social networks [27, 43], and protein
relationships in biological networks [4, 36]. Graph mining provides solutions to practical
problems such as classification of web documents [42, 49], clustering in market segmen-
tation [33], recommendation in streaming services [2], and fraud detection in banking [5,
26].

A dizzying array of new graph mining algorithms is introduced every year to solve these
real-world problems, giving rise to the question: Which algorithm should we choose for a
specific application?Graphmining algorithms designed to solve the same task often have dis-
tinct conceptual formulations. Concretely, to estimate the similarity between two nodes—in
social recommender systems for example—classical graph mining algorithms (like Person-
alized PageRank [1]) compute similarity scores by iterating a closed-form expression, while
graph neural network algorithms [41] first learn node embeddings using deep learning, then
estimate similarity scores with a distance metric in this embedding space. This lack of unity
makes it hard for practitioners to determine which aspect of a method contributes to differ-
ences in computation time, accuracy, and memory footprint—significantly complicating the
choice of the algorithm. Currently, selecting a graph mining algorithm suitable for a specific
task among dozens of candidates is a resource-intensive process requiring expert experience
and brute-force search.

To mitigate the cost and complexity of the algorithm selection process, the machine learn-
ing community has developed AutoML [15, 23]—which automates the process of algorithm
selection and hyperparameter optimization. The success of AutoML depends on the size of
the search space: it should be small enough to be tractable in a reasonable amount of time.
However, AutoML techniques cannot be directly applied to graph mining because the hyper-
parameter search space is not even defined due to the lack of unity among graph mining
algorithms.

Hence, in this paper, we first unify various graph mining algorithms under our Uni-
fiedGM framework, then propose an automated system for graph algorithm development,
AutoGM.We target graph algorithms that passmessages—propagate scores in the PageRank
terminology [19, 27]—along edges to summarize the graph structure into nodes statistics.
UnifiedGMmanipulates five parameters of the message passing mechanism: the dimension
of the communicated messages, the number of neighbors to communicate with (width), the
number of steps to communicate for (length), the nonlinearity of the communication, and
the message aggregation strategy. Different parameter settings yield novel graph algorithms,
as well as existing algorithms, ranging from conventional graph mining algorithms (like
PageRank) to graph neural networks.

Additionally, we introduceUnifiedGM- ext that extendsUnifiedGM to embrace various
attention and sampling methodologies in the message aggregation step. Recently, graph
neural networks have adopted attention and importance sampling methodologies to improve
their performance and scalability. The attentionmethodology computes importance/relevance
scores of each neighbor with regard to a source node, then uses those scores as weights when
we aggregate messages from the neighbors. Importance sampling goes one step further from
attention and samples only neighbors with high relevance scores. By extending UnifiedGM
to embrace attention and importance sampling concepts, we can apply techniques used by
graph neural networks to the conventional graph mining field.
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(a) (b)

Fig. 1 Method finds novel graph algorithms with the best accuracy/inference time trade-off on the node
classification task: aGiven three accuracy lower bounds (i.e., 0.58, 0.63, 0.68),AutoGM generates three novel
graph algorithms minimizing inference time. bGiven three inference time upper bounds (i.e., 0.004, 0.01, 0.1
seconds), AutoGM generates three novel graph algorithms maximizing accuracy

Based onUnifiedGM (andUnifiedGM- ext), we propose an automated system for graph
algorithm development, AutoGM. AutoGM leverages the parameter search space defined
in UnifiedGM to address a practical problem: given a real-world scenario, what is the graph
mining algorithm with the best speed/accuracy trade-off? In real-world scenarios, practition-
ers optimize performance under a computational budget [21, 22]. AutoGM defines a novel
budget-aware objective function capturing the speed/accuracy trade-off, then maximizes the
objective function to find the optimal parameter set of UnifiedGM, resulting in a novel graph
mining algorithm tailored for the given scenario.

The goal of our work is to empower practitioners without much expertise in graph mining
to deploy algorithms tailored to their specific scenarios. The main contributions of this paper
1are as follows:

• Unification UnifiedGM unifies various message-passing-based graph algorithms as
instantiations of a message-passing framework with five parameters: dimension, width,
length, nonlinearity, and aggregation strategy. UnifiedGM- ext extends UnifiedGM
with attention and sampling options in the message aggregation step.

• Design space for graph mining algorithms UnifiedGM provides the parameter search
space necessary to automate graph mining algorithm development.

• Automation AutoGM is an automated system for graph mining algorithm development.
Based on the search space defined by UnifiedGM, AutoGM finds the optimal graph
algorithm using Bayesian optimization.

• Budget awarenessAutoGMmaximizes accuracy of an algorithm under a computational
time budget, or minimizes the computational time of an algorithm under a lower bound
constraint on accuracy.

• EffectivenessAutoGMfinds novel graphmining algorithmswith the best speed/accuracy
trade-off compared to existing models with heuristic parameters (Fig. 1).

Table 1 gives a list of symbols and definitions.
Reproducibility Our code is publicly available 2.

1 This paper is an extended version of [46].
2 https://github.com/minjiyoon/ICDM20-AutoGM.
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Table 1 Commonly used
notation

Symbol Definition

G Input graph

n,m Numbers of nodes and edges in G

A (n × n) binary adjacency matrix of G

d0 Dimension of input feature vectors

d Dimension of communicated messages

k Number of message passing steps

w Number of neighbors sampled per node

l Binary indicator for nonlinearity

a Categorical aggregation strategy

X0 (n × d0) input feature vectors

Xi (n × d) i-th layer message vectors (i = 1 . . . k)

W1 (d0 × d) 1st layer transformation matrix

Wi (d × d) i-th layer transformation matrix

(i = 2 . . . k)

φ(x)

{
ReLU (x) if l = True
x otherwise

2 Background and related work

2.1 AutoML

AutoML is the closest line of related work and the main inspiration for this paper. AutoML
algorithms are developed to automate the process of algorithm selection and hyperparameter
optimization in the machine learning community. The most closely related to our work in
AutoML is Neural Architecture Search (NAS), which focuses on the problem of searching for
the deep neural network architecture with the best performance. The search space includes
the number of layers, the number of neurons, and the type of activation functions, among
other design decisions. NASbroadly falls into three categories: evolutionary algorithms (EA),
reinforcement learning (RL), and Bayesian optimization (BO).

EA-based NAS [7, 18, 24] explores the space of architectures by making a sequence of
changes (inspired by evolutionary mutations) to networks that have already been evaluated.
In RL-based NAS [51, 52], a recurrent neural network iteratively decides if and how to
extend a neural architecture; the non-differentiable cost function is optimized with stochastic
gradient techniques borrowed from the RL literature. Finally, BO-based NAS [15] models
the cost function probabilistically and carefully determines future evaluations to minimize
the total number of evaluated architectures. Since EA and RL-based NAS need to evaluate a
vast number of architectures to find the optimum, these approaches are not ideally suited for
neural architecture search [15]. On the other hand, BO emphasizes being cautious in selecting
which architecture to try next to minimize the number of evaluations. As we discuss later,
this makes BO suitable for our problem. In the following section, we give a brief description
of Bayesian Optimization.
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2.2 Bayesian optimization

Given a black-box objective function f with domain X , BO sequentially updates a Gaussian
Process prior over f . At time t , it incorporates results of previous evaluations 1, ..., t − 1
into a posterior P( f |D1:t−1) where D1:t−1 = {x1:t−1, f (x1:t−1)}. BO uses this posterior to
construct an acquisition function φt (x) that is an approximate measure of evaluating f (x) at
time t . BO evaluates f at the maximizer of the acquisition function xt = argmaxx∈X φt (x).
The evaluation f (xt ) is then incorporated into the posterior P( f |D1:t ), and the process is
iterated.

The evaluation point xt chosen by the acquisition function is an approximation of themax-
imizer of f . After T iterations, BO returns the parameter set of the maximum f among x1:T .
When choosing the point xt to evaluate, the acquisition function φt (x) trades off exploration
(sampling from areas of high uncertainty) with exploitation (sampling areas likely to offer
an improvement over the current best observation). This cautious trade-off helps to minimize
the number of evaluations of f . More details about BO can be found in [3].

These AutoML techniques cannot be directly applied to graph mining, as they require first
formalizing autonomous algorithm selection as an optimization problem in a hyperparameter
search space. BeforeUnifiedGM, the hyperparameter search space for graphmining was not
even defined due to the lack of unity among algorithms. Hence, our proposed UnifiedGM
allows the graph mining field to exploit state-of-the-art techniques developed in AutoML.

2.3 Graph neural architecture search

Various discussions [50] on graph neural architecture search have been initiated. [8] adopts
the RL-based neural architecture search approach. [8] uses a recurrent neural network to
generate variable-length strings that describe the architectures of graph neural networks, and
trains the recurrent network with policy gradient to maximize the expected accuracy of the
generated architectures on a validation data set. [47] focuses on designing general space for
graph neural networks, that includes three crucial aspects of graph neural architecture design:
intra-layer design, inter-layer design, and learning configuration. Based on this design space,
[47] develops a controlled random search evaluation procedure to understand the trade-offs
of each design dimension. [9, 35] and [48] focus on how tomake the graph neural architecture
search processmore scalable.Whilemost previousworks focus on graph neural networks, we
broaden the scope to embrace conventional graph mining algorithms such as PageRank [27],
Pixie [6], and K-core [34].We analyze why conventional graph mining algorithms and recent
graph neural networks look unrelated at first glance and describe how they could be unified
under one framework (Sect. 3.4).

3 Unified graphmining framework

In this section, we first motivate the message passing scheme (Sect. 3.1). We then propose
our unified framework UnifiedGM (Sect. 3.2), explain how existing algorithms fit in the
framework (Sect. 3.3), and further analyze how UnifiedGM bridges the conceptual gap
between conventional graphmining and graph neural networks (Sect. 3.4). Finally, we outline
how to choose parameters of UnifiedGM given a specific scenario (Sect. 3.5).
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3.1 Message passing

A goal common to many graph mining algorithms is to answer queries at the node level (e.g.,
node clustering, classification, or recommendation) based on global graph information (e.g.,
edge structure and feature information from other nodes). To transmit the information nec-
essary to answer such queries, in classical graph mining algorithms, nodes propagate scalar
scores to their neighbors, while in graph neural networks, nodes aggregate feature vectors
from their neighbors. In short, both families of algorithms pass messages among neighbors:
scalars or vectors, inbound or outbound. The intuition behind these message passing algo-
rithms is thatwhatever the task at hand, connectivity/localitymatters: connected/nearby nodes
are more similar (clustering), informative (classification), or relevant (recommendation) to
each other than disconnected/distant nodes. Our unified framework targets graph algorithms
that use the message passing mechanism.

3.2 UNIFIEDGM

We propose a unified framework UnifiedGM for graph mining algorithms that employ the
message passing scheme.UnifiedGM defines the message passing mechanism based on five
parameters:

• Dimension d ∈ Z>0 of passed messages. If d = 1, messages are scalar scores, otherwise
they are d-dimensional embedding vectors.

• Width w ∈ Z∪ {−1} decides the number of neighbors each node communicates with. If
w = −1, nodes communicate with all their neighbors.

• Length k ∈ Z decides the number of message passing steps.
• Nonlinearity l ∈ {True,False} decides whether to use nonlinearities in the message

passing or not.
• Aggregation strategy a decides if a node sends a message to itself and how to normalize

the sum of incoming messages.

Figure 2 shows how each parameter regulates message passing under UnifiedGM.
The input of UnifiedGM is a graph G = (V , E) and a matrix X0 of size (n × d0)

containing d0-dimensional initial node statistics for all n nodes—either scalar scores or
feature vectors. Note that d0 could be different from d , the dimension of the passedmessages.
The output of UnifiedGM is a set of d-dimensional node embeddings. These embeddings

Fig. 2 UnifiedGM defines the message passing mechanism based on five parameters: the dimension d, length
k, width w, nonlinearity l, and aggregation strategy a
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Algorithm 1: UnifiedGM Algorithm
Require: initial node statistics X0, binary adjacency matrix A
Ensure: node embeddings Xk
1: Initialize node statistics X0
2: for message passing step i = 1; i ≤ k; i++ do
3: Sample neighbors for each node: Asamp ← Sample(A)

4: Generate aggregation matrix: Aagg ← Aggregate(Asamp)
5: Aggregate messages Xi ← AaggXi−1
6: Multiply with transformation matrix: Xi ← XiWi

7: Pass through nonlinear function: Xi ← φ(Xi ) =
{
ReLU (Xi ) if l = True
Xi otherwise

8: end for

9: return Xk

contain information from the node’s neighborhood and can be exploited in an output layer
which is specialized to a given application (e.g., a logistic regression for node classification.)

Algorithm 1 outlines how UnifiedGM passes messages across a graph based on a set
of five parameters (d, k, w, l, a). UnifiedGM first initializes node statistics (line 1), then
iteratively passes messages among neighboring nodes k times. In the i-th message passing
step,UnifiedGM randomly samplesw neighbors to communicate with for each node (line 3)
and aggregates messages from sampled neighbors with a strategy decided by the parameter a
(lines 4 and 5). Then UnifiedGM transforms the aggregated messages linearly with a matrix
Wi (line 6) and finally passes them through a function φ decided by the parameter l (line 7).

Let us explain in further detail the neighbor sampling and message aggregation steps.
Neighbor sampling (line 3) can be expressed as generating a matrix Asamp = Sample(A) by
randomly zeroing out entries of the binary adjacency matrix A. Message aggregation (lines 4
and 5) is defined by the aggregation strategy a ∈ {SA, SS, SN,NA,NS,NN}. The first letter in
{S, N} determineswhether a node sends amessage to itself or not (Self-loop orNo-self-loop).
The second letter in {A, S, N} determines how to normalize the sum of incoming messages
(Asymmetric, Symmetric, or No-normalization). Each aggregation strategy a results in an
aggregation matrix Aagg = Aggregate(Asamp), explained in Table 2. Multiplying messages
Xi−1 from the previous step by the matrix Aagg corresponds to aggregating messages from
neighboring nodes.

Letting fi denote the i th layer of message passing, we can summarize UnifiedGM as
follows:

Asamp = Sample(A)

Aagg = Aggregate(Asamp)

Xk = fk(Xk−1) = φ(AaggXk−1Wk)

= fk( fk−1(. . . f1(X0)))

vX0 is the (n × d0) matrix of initial statistic vectors, Xi is the (n × d) matrix of statistic
vectors at step i for (i = 1 . . . k).W1 andWi are (d0×d) and (d×d) transformationmatrices,
respectively (i = 2 . . . k).
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Table 2 The aggregation strategy a decides if a node sends a message to itself or not (Self-loop or No-self-
loop) and how to normalize the sum of incoming messages (Asymmetric, Symmetric, or No-normalization)

Self-loop (S) No-self-loop (N)

Asymmetric (A) D−1(A + In) D−1A

Symmetric (S) D−1/2(A + In)D−1/2 D−1/2AD−1/2

No-normalization (N) (A + In) A

Each combination corresponds to an aggregation matrix Aagg = Aggregate(A) in the table. Notation: n is the
number of nodes in a graph, A is a (n × n) binary adjacency matrix, D is a (n × n) diagonal matrix where
Dii = ∑

j Ai j , and In is an identity matrix of size n

3.3 Reproduction of existing algorithms

In this section,we introduce themost popular graphmining algorithms exploiting themessage
passing scheme and show how they can be presented under UnifiedGM. Table 3 shows how
to set initial node statistics and parameters (d, k, w, l, a) of UnifiedGM to reproduce the
original graph algorithms.

PageRank [27] scores nodes in a graph based on their global relevance/importance, and
was initially used by Google for webpage recommendation. PageRank initializes all n nodes
in the graph with a score of 1

n . Then, every node iteratively propagates its score across
the graph with a decay coefficient 0 < c < 1 to ensure convergence. Under UnifiedGM,
PageRank propagates scalar scores (d = 1) to all neighbors (w = −1) with no nonlinear unit
(l = False) until scores have converged (k = ∞), and aggregates messages with no self-loop
and asymmetric normalization (a = NA). Note that the (d × d) transformation matrix W in
UnifiedGM becomes a scalar value and corresponds to the decay coefficient c.

Personalized PageRank (PPR) [1] and RandomWalk with Restart (RWR) [43, 44] build
on PageRank to estimate the relevance of nodes in the perspective of a specific set of seed
nodes thus enable personalized recommendation. Under UnifiedGM, the only difference
of PPR/RWR from PageRank is the initial node scores: RWR/PPR place varying positive
scores on the set of seed nodes and zero scores on others. PPR/RWR have the same set of
(d, k, w, l, a) as PageRank.

Pixie [6], introduced by Pinterest, complements the ideas of PPR and RWR with neighbor
sampling to dealwith billions of nodes in real-time. Pixie fixes the number ofmessage passing
operations and stayswithin a computation budget. To reproduce this underUnifiedGM, Pixie
fixes the product of k andw to a constant number (e.g., 2, 000 from [6]): after k is sampled,w
is decided as 2,000

k . Pixie has the same initial node statistics and parameter d = 1, l = False,
and a = NA with PPR/RWR.

Graph Convolutional Networks (GCNs) [17] are a variant of Convolutional Neural Net-
works that operates directly on graphs. GCNs stack layers of first-order spectral filters
followed by a nonlinear activation function to learn node embeddings. Under UnifiedGM,
given node feature vectors as initial node statistics, GCN passes message vectors (d = 64) to
all neighbors (w = −1) with nonlinear units (l = True) across two-layered networks (k = 2)
and aggregates messages with a self-loop and symmetric normalization (a = SS).
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GraphSAGE [10] extendsGCNwith neighbor sampling. GraphSagewith amean aggregator
averages statistics of a node and its sampled neighbors. Under UnifiedGM, GraphSAGE-
mean has the same parameters as GCN except w and a. GraphSAGE-mean samples a fixed
number of neighbors to communicatewith (w = 25) and normalizes the aggregatedmessages
asymmetrically (a = SA).

Simplified GCN (SGCN) [40] reduces the excess complexity of GCN by removing the
nonlinearities between GCN layers and collapsing the resulting function into a single linear
transformation.With fewer parameters to train, SGCN is computationally more efficient than
GCN but shows comparable performance on various tasks. Under UnifiedGM, SGCN has
the same parameters with GCN except l. SGCN does not use any nonlinear unit (l = False).

Table 3 presents the original message passing equations of the existing graph algorithms.
Those equations can be fully reproduced from Algorithm 1 with the proper initial node
statistics and parameter sets listed in Table 3.

Here, we introduce two more graph algorithms that are unified under UnifiedGM with
slight modifications: K-cores [34] and Belief Propagation [28] — two of the most popular
graph mining algorithms. Although these algorithms do not contain trainable parameters and
thus do not benefit fromAutoGM, they fit underUnifiedGM’smessage-passing framework.
This shows that UnifiedGM is general enough to cover various graph mining algorithms.

• K-core [34] is the maximal subgraph in which every node is adjacent to at least k
nodes. The most straightforward algorithm to compute k-cores is the so-called shaving
method [32]: repeatedly deleting nodes with a degree less than k until no such node is
left. The shaving method is presented in an iterative equation as follows:

xk+1 = φ(Akxk − k1)

where xk is an indicator vector for k-cores where xk(i) is 1 when i-th node is part of
k-cores, otherwise set to 0; Ak is the binary adjacency matrix where only edges among
xk(i) = 1 are set to 1, otherwise 0. When we multiply Ak with xk , the output vector
contains the degree of each node in k-cores.φ(x) is a nonlinear operationwhereφ(x) = 1
when x > 0 else φ(x) = 0. In Akxk − k1, only nodes whose degree is higher than k
have positive values. Thus, by passing Akxk − k1 to φ(x), we output xk+1, the indicator
vector for k + 1-cores. Under UnifiedGM, k-cores propagates scalar scores (d = 1)
to all neighbors (w = −1) with a nonlinear unit (l = True) k times, and aggregates
messages with no self-loop and no normalization (a = NN ). The slight modifications to
UnifiedGM are that the adjacency matrices Ak are iteratively updated, and we perform
a subtraction operation (−k1) instead of the transformation operation (W ). Note that the
(d × d) transformation matrix W in UnifiedGM becomes the constant value 1.

• Belief Propagation (BP) [28] calculates the marginal belief distribution for unobserved
nodes, conditional on any observed nodes’ belief. FastBP [20] is one of the most widely
used approximation algorithms forBP.WhileBPdoes not guarantee convergence, FastBP
provides convergence in addition to speed and accuracy improvement. FastBP linearizes
BP as follows:

[I + a′D − b′A]x = φBP

where I , D, and A denotes n×n identity, diagonal, and adjacencymatrices, respectively;
a′ and b′ are hyperparameters decided by the BP propagation matrix; x is the final belief
vector and φBP is the prior beliefs. The equation is presented in an iteration equation as
follows:
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x = [b′A − a′D]x + φBP

This iteration equation has the same form as PageRank. Under UnifiedGM, the only
difference between FastBP and PageRank is the initial node scores and the aggregation
strategy: FastBP sets the initial node scores X0 with the prior beliefs φBP and does not
normalize the aggregation but adds self-loop with coefficients (a′D − b′A). FastBP has
the same set of parameters (d, k, w, l) as PageRank.

3.4 Conventional GM vs. GNNs

As shown, conventional graph algorithms (e.g., PPR, RWR, Pixie) and recent GNNs are uni-
fied underUnifiedGM. However, before this work, these algorithmswere not analyzed in the
same framework. What has prevented them from being combined? Two main differences—
the use of node feature information and trainability—are the culprits. While GNNs exploit
additional node feature information and labels with semi-supervised learning, conventional
graph algorithms do not. We analyze this apparent gap and show howUnifiedGM reconciles
both families of algorithms.

Node feature information Conventional graph algorithms do not exploit node features, but
instead, choose a set of seed nodes to initialize with scores suitable for a given application.
Under UnifiedGM, these algorithms are also applicable with node features by maintaining
the same values for parameters (d = 1, k, w, l, a), but setting initial input dimension d0 to be
the input feature dimension and using a 1st layer transformation matrix W1 of size (d0 × 1).
This would yield a new version of PageRank or PPR that exploits feature information.

Semi-supervised learning In GNNs, the transformation matrix W is trained with semi-
supervised learning using node labels. On the other hand, conventional graph algorithms do
not have a training phase in advance of an inference phase. However, conventional algorithms
are trainable: the decay coefficient c in PageRank, PPR, and RWR corresponds to an (1× 1)
transformation matrix W under UnifiedGM. Because of its low dimension, the (1 × 1)
transformation matrix could be set heuristically (e.g., c = 0.85 in PageRank). But we could
use label information to train this (1 × 1) matrix W with gradient descent as we train it in
GNNs.

In our experiments, we show how to train conventional algorithms (PageRank and Pixie)
with feature information.

3.5 Parameter selection

We explain the effects of parameters (d, k, w, l, a) on the performance of graph algorithms
and how to choose the proper parameters by illustrating the existing algorithm design.

• Dimension d: High dimensions of messages enrich the expressiveness of graph algo-
rithms by sacrificing speed. If an application prioritizes fast and simple algorithms, scalar
messages (e.g., d = 1 in Pixie) are suitable. In contrast, when applications prioritize rich
expressiveness of messages and accuracy, high dimensional vectors (e.g., d = 64 in
GNNs) are more appropriate.

• Length k: By deciding the number of message passing steps, k regulates the size of
neighborhoods where a graph algorithm assumes locality — where nearby nodes are
considered informative. For instance, GCNs assume that a small neighborhood is relevant
(k = 2). However, when there are label sparsity issues, GNNs propagate toward large
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scopes (k = 7) to transmit label information from distant nodes. Large k results in a long
computation time but does not guarantee a high accuracy.

• Widthw: Largew lets algorithms aggregate information frommore neighbors, leading to
a possible increase in accuracy. At the same time, largew requires more message passing
operations, resulting in longer computation time. In graphs with billions of nodes, like
the Pinterest social network, smallw is necessary to answer queries in real-time (as done
by Pixie).

• Nonlinearity l: Nonlinearities enhance the expressiveness of graph algorithms at the cost
of speed. They are suitable for anomaly detection systems that require high accuracy (e.g.,
GNNs for infection detection in medical applications). In contrast, omitting nonlinearity
is appropriate for fast recommender systems in social networks (e.g., Pixie in Pinterest).

• Aggregation strategy a: The self-loop decides whether a node processes its own embed-
ding during message passing. GNNs include a self-loop to complement a node’s features
with information from its neighborhood. Conversely, PageRank and RWR do not include
a self-loop as they want to spread information from a source node to the rest of the
graph to figure out the graph structure. Normalization prevents numerical instabilities
and exploding/vanishing gradients in GNNs.

In our experiments, we explore how the five parameters affect the performance of graph
algorithms empirically.

4 Extended UnifiedGM

We introduce UnifiedGM- ext that extends the message-aggregation step in UnifiedGM
with two additional building blocks: attention and importance sampling. Recently, graph neu-
ral networks havebeen improved invariousways to improve their performance and scalability.
These improvements focus on the aggregation step in the message passing mechanism. In the
original form of the message passing mechanism, nodes pass/receive messages uniformly
from their directly connected neighbors, assuming that these neighbors are informative.
Questions have been raised about this assumption: are all neighbors informative enough to
communicate with? In real-world graphs, few connections are made by mistake, and some
are valid only for a specific application. For instance, in member-to-member networks in
LinkedIn, connections could be made not only among colleagues but also among personal
friends and families. When we apply the message passing mechanism on the LinkedIn net-
work to make job recommendations, we aggregate information not only from the colleagues
who are crucial information for the job recommendation task, but also from personal friends
and families who are from different areas and often irrelevant. The motivations are sum-
marized as follows: which neighbors are informative to pass/receive messages? and how
trustworthy are they?

Attention and importance samplingmethodologies are proposed on graph neural networks
to handle these problems. The attention-based GNNs compute importance/relevance scores
of each neighbor with regard to a source node, then use those scores as weights when they
aggregate messages from the neighbors and compute a weighted sum of the aggregated mes-
sages. Importance sampling goes one step further from attention and samples only neighbors
with high relevance scores. Importance sampling does not only handle different importance
scores among neighbors, but also solves scalability issues by reducing the size of graphs
through sampling.
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Fig. 3 UnifiedGM computes
attention between a source node
A and its neighbors based on
their relevance to node A.
Unrelated or adversarial
neighbors have small attentions

As we described in Sect. 3.4, UnifiedGM unifies the conventional graph mining algo-
rithms and graph neural networks. By extending UnifiedGM to embrace attention and
importance sampling concepts, UnifiedGM- ext allows applying techniques used by graph
neural networks to the conventional graph mining field. To adopt attention intoUnifiedGM-
ext, we add additional options to the aggregation parameter a. To apply importance sampling
on UnifiedGM- ext, we add a new parameter s that decides the sampling strategy. The
following section showshowUnifiedGM- ext embraces the concepts of attention and impor-
tance sampling concretely.

4.1 Attention

Graph attention networks (GAT) [37] is the first attention-based graph neural network model.
It estimates the relevance between a source node and its neighbors using their hidden embed-
dings. Then the computed relevance scores (attentions) are used as weights in a weighted sum
in the aggregation step. How to estimate relevance between two nodes or how to design the
attention model varies across different methods. UnifiedGM- ext extends the aggregation
parameter a with new options: concatenation-based attention, dot-product-based attention,
and low-pass attention. We describe how each attention model works under UnifiedGM-
ext.

• Concatenation-based attention proposed in [37] computes a relevance score αl(i, j)
between node i and j at the l-th layer as follows:

αl(i, j) = σ(aatt · [hl(i)||hl( j)])∑
k∈N (i) σ (aatt · [hl(i)||hl(k)])

where aatt denotes a (1 × 2d) learnable parameter, σ(x) = exp(LeakyReLU (x)) is a
nonlinear operation for attention computation, hl(i) = xl(k)Wl denotes hidden embed-
ding of node i at the l-th layer after multiplying with the transformation matrix Wl ,
and N (i) denotes the neighbors of node i . Since we concatenate the hidden embeddings
([hl(i)||hl( j)])),we name it as a concatenation-based attentionmodel. Thenwe aggregate
messages (hl( j)) from neighbors using the computed attention αl(i, j) as follows:

xl+1(i) = φ(
∑
j∈N (i)

αl(i, j)hl( j))

where φ(x) is the operation decided by the nonlinearity parameter l inUnifiedGM (refer
to Table 1). Then xl+1 is used as (l + 1)-th layer hidden embeddings.
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• Dotproduct-based attention calculates a relevance score αl(i, j) between node i and j
as follows:

αl(i, j) = σ(Watt hl(i) · Watt hl( j))∑
k∈N (i) σ (Watt hl(i) · Watt hl(k))

whereWatt denotes a (datt ×d) learnable parameter whichmaps hidden embedding hl(i)
from d-dimensional space to datt -dimensional space. On the datt -dimensional space,
we compute the relevance score between node i and j by dot-producing their hidden
embeddings.

• Low-pass attention reduces the impact of adversarial edge additions/deletions on graphs.
To filter out adversarial nodes, [38] introduces a low-pass filter to GCNs that decrease
weights of neighbors who are excessively different from a source node in the hidden
embedding space. They define a low-pass attention as follows:

βl(i, j) = R

max(R, ||hl(i) − hl( j)||)

αl(i, j) =

⎧⎪⎨
⎪⎩

βl(i, j)/di if j ∈ N (i) \ {i}
1 − ∑

j∈N (i)\{i} βl(i, j)/di if j = i

0 otherwise

where R > 0 is a threshold for controlling the low-pass message passing and di = |N (i)|
denotes the number of neighbors of node i . βl(i, j) assigns a weight of 1 if hl(i) and hl(i)
are less than R apart, while gradually reducing the weight as the distance between them
exceeds R. More distant from the source node i in the embedding space, the neighbor
node j has a smaller weight βl(i, j). Then, the final attention αl(i, j) acts as a low-pass
filter to prevent the source node from being excessively affected by suspicious neighbors
by giving small attentions.

In Sect. 3, the aggregation parameter a has six options (NN, NS, NA, SN, SS, SA from
Table 2). By merely adding three more options (concatenation, dot product, low-filter atten-
tions) to the parameter a, UnifiedGM- ext successfully embraces attention-based models.

4.2 Importance sampling

In Sect. 3, we introduce uniform sampling in UnifiedGM- ext where the sampling number
is decided by the sampling parameterw. While uniform sampling resolves high computation
and memory footprints problems by reducing the graph’s size, it leads to a possible loss of
crucial information. Uniform sampling does not discriminate informative neighbors from
uninformative ones in the sampling process. Thus it could sample only uninformative or
irrelevant neighbors for aggregation, resulting in low-quality embeddings. To deal with this
limitation of uniform sampling, importance sampling has been adopted in GCNs. Importance
sampling samples each neighbor following their distinct sampling probabilities, and the
sampling probabilities are computed based on their relevance with regard to a source node.

We expand UnifiedGM- ext with new parameter s that regulates the message passing
mechanism’s sampling strategy. The sampling strategy decides (1) how to define sampling
probabilities, (2) whether the sampling probabilities are learnable or not, and (3) when to
sample neighbors. We describe each component of the sampling strategy and its effect on
the sampling process in UnifiedGM- ext.
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Fig. 4 Uniform sampling
samples informative and
uninformative neighbors with an
equal probability. It could sample
only uninformative or irrelevant
neighbors. On the other hand,
importance sampling samples
each neighbor following their
distinct sampling probabilities,
and the sampling probabilities are
computed based on their
relevance with regard to a source
node

(b)

(a)

• How to define sampling probabilities Sampling probability p( j |i) of a neighbor node j
given a source node i could be computed individually or by a shared function with other
edges. Individual sampling probability p( j |i) is given as a scalar value that is decided
independently from other edges’ sampling probabilities. The only requirement is the sum
should be 1 (

∑
j∈N (i) p( j |i)). The individual sampling probabilities could be all same

(uniform sampling, p( j |i) = 1/|N (i)|) or proportional to their degree as follows:

p( j |i) = |N ( j)|∑
k∈N (i) |N (k)|

where N (i) denotes the degree of node i . The shared function p( j |i) could have var-
ious forms including the three attention models we described above. While individual
sampling probabilities are intuitive and easy to interpret, shared sampling probability
functions share a small number of parameters, thus less likely to be overfitted to the
training set.

• Learnability of sampling probabilities The sampling probabilities defined as either indi-
vidual scalar values or a shared function could be set heuristically and fixed to the initial
values. They could also be trained by gradient back-propagation. While heuristic sam-
pling probabilities are cost-efficient without additional sampling probability training,
learnable sampling probabilities are customized to a given application, leading to a per-
formance improvement.

• When to sample neighbors: Static sampling samples neighbors of each node before the
message passingmechanism. In static sampling, a set of sampled neighbors is fixed during
the message passing mechanism. Thus nodes keep interacting with the same set of their
sampled neighbors in every layer. On the other hand, dynamic sampling samples a new set
of neighbors every time a source node is engaged in the message passing mechanism as
described in Algorithm 1. In dynamic sampling, nodes receive/pass messages with a new
set of the sampled neighbors at each layer.While static sampling reduces the computation
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Table 4 UnifiedGM- ext defines a sampling strategy based on (1) where the sampling probabilities are
learnable, (2) how the sampling probabilities are designed, and 3) when the sampling is executed

Learnability Sampling probability model form Sampling timing

Heuristic Uniform distribution Static

Dynamic

Proportional to degree Static

Dynamic

Learnable Concatenation-based attention model Static

Dynamic

Dot-product-based attention model Static

Dynamic

Low-pass filter attention model Static

Dynamic

time by running the sampling process only once, dynamic sampling increases accuracy.
Randomness in the dynamic sampling brings a regularization effect, which helps with
generalization.

In Table 4, the sampling parameter s has 5 (two heuristics and three shared models) ×2
(heuristic/learnable) ×2 (static/dynamic) = 20 options. With the addition of the parame-
ter s, UnifiedGM- ext now has six parameters (d, w, k, l, a, s) to define a graph mining
algorithm based on a message-passing mechanism. Users decide whether to append new
attention options to the parameter a and add a sampling parameter s to UnifiedGM. This
section showed UnifiedGM- ext is general enough to embrace new approaches with very
few modifications. The following section about an automated system for graph algorithm
development is based on the original UnifiedGM from Sect. 3. However, the number of
parameters or the number of options for each parameter does not affect the algorithm we
describe in the next section.

5 Automation of graphmining algorithm development

With the proper parameter selection,UnifiedGM could output a graph algorithm tailored for
a specific application.However, the parameter selection process still relies on the intuition and
domain knowledge of practitioners, which would prevent non-experts in graph mining from
fully exploiting UnifiedGM. How can we empower practitioners without much expertise to
deploy customized algorithms? We introduce AutoGM, which generates an optimal graph
algorithm autonomously given a user’s scenario.

When designing an algorithm for an application, we need to consider two primarymetrics:
computation time and accuracy, which usually trade off each other. Take, for example, a
developer who aims to develop an online recommender system that makes personalized
recommendations to a large number of users at the same time. At first, she employs a state-
of-the-art GNN model (in terms of accuracy) but finds that the computation time is too long
for her application. Then the developer seeks an alternative simple graph algorithm that runs
faster than a time budget by sacrificing accuracy. AutoGM incorporates this practical issue
of finding the best speed-accuracy trade-off into the graph algorithm generation problem.
AutoGM answers two questions: (1) given the maximum acceptable computation time,
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which graph algorithm maximizes accuracy? (2) given minimum accuracy requirements,
which graph algorithm minimizes computation time?

We first formalize our budget-aware graph algorithm generation problem as a constrained
optimization problem. Then we replace the constrained problem with an unconstrained opti-
mization problem using barrier methods (Sect. 5.1). We explain why Bayesian optimization
is well-suited for this unconstrained problem (Sect. 5.2). Then we describe how AutoGM
solves the optimization problem using Bayesian optimization (Sect. 5.3). Finally, we analyze
the time complexities of AutoGM (Sect. 5.4).

5.1 Budget-aware objective function

Letting x denote a graph algorithm, g(x) and h(x) indicate the computation time and accuracy
of x , respectively. Then an optimal graph algorithm generation problem with an accuracy
lower bound hmin is presented as a constrained optimization as follows:

xopt = argminx g(x) subject to h(x) − hmin ≥ 0 (1)

One of the common ways to solve a constrained optimization problem is using a barrier
method [29], replacing inequality constraints by a penalizing term in the objective function.
We re-formulate the original constrained problem in Eq. 1 as an equivalent unconstrained
problem as follows:

xopt = argminx g(x) + Ih(x)−hmin≥0(x) (2)

where the indicator function Ih(x)−hmin≥0(x) = 0 if h(x) − hmin ≥ 0 and ∞ if the constraint
is violated. Equation 2 eliminates the inequality constraints, but introduces a discontinuous
objective function, which is challenging to optimize. Thus we approximate the discontinuous
indicator functionwith an optimization-friendly log barrier function. The log barrier function,
defined as − log(h(x) − hmin) is a continuous function whose value on a point increases to
infinity (− log 0) as the point approaches the boundary h(x) − hmin = 0 of the feasible
region. Replacing the indicator function with the log barrier function yields the following
optimization problem:

fGM (x) = g(x) − λ log(h(x) − hmin) (3)

xopt = argminx fGM (x) (4)

fGM is our novel budget-aware objective function and λ > 0 is a penalty coefficient.
Equation 4 is not equivalent to our original optimization problem, Eq. 1. However, as
λ approaches zero, it becomes an ever-better approximation (i.e., −λ log(h(x) − hmin)

approaches Ih(x)−hmin≥0(x)) [29]. The solution of Eq. 4 ideally converges to the solution
of the original constrained problem. Now, our budget-aware graph algorithm generation
problem is formulated as a minimization problem of fGM .

Given a minimum accuracy constraint accmin, we set g(x) = time to minimize and
h(x) − hmin = acc − accmin ≥ 0 as a constraint. On the other hand, given a maximum
inference time constraint timemax, we want to maximize accuracy while observing the time
constraint. Then we set g(x) = −acc to minimize and h(x) − hmin = timemax − time ≥ 0
as a constraint.
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Algorithm 2: AutoGM Algorithm
Require: minimum accuracy (or maximum inference time) constraint, target dataset, BO search budget
Ensure: a graph algorithm (i.e., five parameters of UnifiedGM)
1: for iteration i = 1; i < BO search budget; i++ do
2: Choose a point (d, k, w, l, a) to evaluate
3: Generate a graph mining algorithm A from (d, k, w, l, a)

4: Train A on the training set
5: Evaluate A and measure acc, t ime on the validation set
6: Evaluate fGM (acc, t ime) and update posterior of fGM
7: end for
8: return a parameter set with the minimum fGM

5.2 Bayesian optimization

Under UnifiedGM, a graph algorithm x is defined by a set of parameters (d, k, w, l, a).
Then search space X for the optimization problem becomes a five-dimensional space of
parameters (d, k, w, l, a). Suppose we set cardinalities for each parameter as 300, 30, 50, 2,
and 6, respectively (i.e., 0 < d ∈ Z ≤ 300, 0 < k ∈ Z ≤ 30, 0 < w ∈ Z ≤ 50, l ∈
{True, False}, a ∈ {N A, NS, NN , SA, SS, SN }). Then the number of unique architec-
tureswithin our search space is 300×30×50×2×6 = 5.4×106,which is quite overwhelming.
Moreover, training and validating a graph algorithm, especially on large datasets, takes sig-
nificant time. Thus it is impractical to search the space X exhaustively. Most importantly,
even if we could measure the computation time and accuracy (g(x) and h(x)) of a graph
algorithm and calculate the objective function fGM (x) = g(x) − λ log(h(x) − hmin), we do
not know the exact closed-form of fGM (x) = fGM (d, k, w, l, a) in terms of the parameters
(d, k, w, l, a) nor its derivatives. Thus, we cannot exploit classical optimization techniques
that use derivative information. To cope with these problems—expensive evaluation and no
closed-form expression nor derivatives—which optimization technique is appropriate?

Bayesian optimization (BO) [3] is the most widely-used approach to find the global opti-
mum of a black-box cost function—a function that we can evaluate but for which we do not
have a closed-form expression or derivatives. Also, BO is cost-efficient with as few expen-
sive evaluations as possible (more details in Sect. 2.2). Therefore, BO is well-suited to our
problem to find the best parameter set (d, k, w, l, a) given the expensive black-box objective
function fGM (x).

5.3 AUTOGM

Users supply three inputs to AutoGM: (1) a budget constraint (the minimum accuracy
or maximum computation time), (2) a target dataset on which they want an optimized
algorithm—containing a graph, initial node scores, and labels for supervised learning—
and (3) a search budget for Bayesian Optimization. The search budget is given as the total
number of evaluations in BO. Then AutoGM outputs the optimal graph mining algorithm
(i.e., parameter set of UnifiedGM).

Algorithm 2 outlines how AutoGM works. Until it has exhausted its search budget,
AutoGM repeats the process: (1) Pick a point x = (d, k, w, l, a) ∈ X to evaluate using
an acquisition function of BO (line 2) then generate a graph algorithm A from parameters
(d, k, w, l, a) (line 3). (2) Train A on the training set (line 4) and measure accuracy and
inference time of A on the validation set (line 5). (3) Evaluate the objective function fGM
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given the accuracy and inference time of A, then update a posterior model for fGM in BO
(line 6). After all iterations, AutoGM returns the parameter set x = (d, k, w, l, a) with the
minimum fGM among the evaluated points.

The search space of AutoGM is not affected by the input but fixed to a five-dimensional
space of parameters (d, k, w, l, a). The search time of AutoGM is determined by the BO
search budget (total number of evaluations) and evaluation time. Since the evaluation time
of a graph algorithm is often proportional to the input dataset’s size, the total search time
of AutoGM is decided by the dataset. BO’s minimization of the number of evaluations
is especially efficient for large datasets which result in the long evaluation time. Our main
contribution is defining the graph algorithm generation problem as an optimization problem
on a novel search space.

5.4 Time complexity analysis

We analyze the time complexities of UnifiedGM and AutoGM.

Theorem 1 (Time Complexity of UnifiedGM) A graph mining algorithm A generated from
UnifiedGM with a parameter set (d, k, w, l, a) takes O(kdwn) time where n is the number
of nodes in a given graph.

Proof Under UnifiedGM, matrix-vector multiplication operations represent the bulk of the
computation time. In the matrix-vector multiplication operations, the matrix corresponds to
the adjacency matrix whose number of nonzeros is O(wn). Under UnifiedGM, every node
samples w neighbors, summing up to O(wn) edges in the sampled graph. In the matrix-
vector multiplication operations, the vector corresponds to node embeddings X ∈ R

n×d .
Then one matrix-vector multiplication operation takes O(dwn). Under UnifiedGM, the
matrix-vector multiplication operation is executed k times across k layers. The nonlinear
operation is decided by l and the normalization operation is decided by a take O(n) time
each. Thus the algorithm A takes O(kdwn) time in total. 	

In Theorem 1, we show the time complexity of the graph algorithm generated from Uni-
fiedGM in terms of the parameters d, k, w, l, a. However, in Theorem 2, we express the time
complexity of AutoGM in different terms. Intuitively, the computation time of AutoGM is
proportional to the number of times we train a graph algorithm—i.e., evaluate a configuration
(d, k, w, l, a)—times the time it takes to train the algorithm. To represent the time it takes
to train an algorithm, we cannot rely on the parameters (d, k, w, l, a) as they keep changing
while AutoGM searches the space. Instead, we note that the computation time of one epoch
of training is mainly decided by the size of the graph, which we represent by the number of
edges m. The training time is then proportional to Em, where E is the number of training
epochs. The total time to BEm where B is the number of times we train the algorithm (the
number of evaluations allowed by the BO search budget).

Theorem 2 (Time Complexity of AutoGM) AutoGM takes O(BEm) for searching the
optimal graph mining algorithm where m is the number of edges in a given graph, E is the
number of epochs for the training, and B is the BO search budget.

Proof The computation time of AutoGM is proportional to the number of times we train a
graph algorithm (evaluate a hyper-parameter configuration) times the time it takes to train the
algorithm. The graph algorithm executes several adjacency matrix-embedding vector multi-
plication operations in the forward and backward pass, which take O(m). This is repeated for

123



M. Yoon et al.

(a) (b)

(c) (d)

Fig. 5 AutoGM finds the algorithms with the best accuracy/inference time trade-off on the node classification
task: given three different accuracy/inference time constraints 1, 2, 3, AutoGM generates three novel graph
algorithms, AutoGM-1, 2, 3, respectively

every batch (E times), for a total training time Em. Finally, AutoGM trains the algorithm
B times as described in Algorithm 2. Thus the overall computation time of AutoGM is
O(BEm). 	


6 Experiments

In this section, we evaluate the performance of AutoGM compared to existing models with
heuristic parameters. We aim to answer the following questions:

• Q1. Effectiveness of AutoGM Do algorithms found by AutoGM outperform their state-
of-the-art competitors? Given an upper bound on inference time/a lower bound on
accuracy, does AutoGM find the algorithm with the best accuracy/the fastest inference
time? (Sect. 6.2)

• Q2. Search efficiency of AutoGM How long does AutoGM take to find the optimal
graph algorithm? How efficient it is compared to random search? (Sect. 6.3)

• Q3. Effect of UnifiedGM parameters How do parameters (d, k, w, l, a) affect the accu-
racy and inference time of a graph mining algorithm? (Sect. 6.4)

6.1 Experimental setting

We evaluate the performance of graph mining algorithms on two semi-supervised tasks, node
classification and link prediction. All experiments were conducted on identical machines
using the Amazon EC2 service (p2.xlarge with 4 vCPUs, 1 GPU and 61 GB RAM).
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Table 5 Dataset statistics: AmazonC andAmazonP denote theAmazonComputer andAmazonPhoto datasets,
respectively

Dataset Node Edge Feature Label Train/Val/test

Cora 2485 5069 1433 7 140/500/1000

Citeseer 2110 3668 3703 6 120/500/1000

Pubmed 19,717 44,324 500 3 60/500/1000

AmazonC 13,381 245,778 767 10 410/1380/12,000

AmazonP 7487 119,043 745 8 230/760/6650

CoauthorC 18,333 81,894 6805 15 550/830/15,950

CoauthorP 34,493 247,962 8415 5 1030/3450/30,010

CoauthorC and CoauthorP denote the MS Coauthor CS and Physics, respectively

Dataset We use the three citation networks (Cora, Citeseer, and Pubmed) [30], two Amazon
co-purchase graphs (Amazon Computers and Amazon Photo) [31], and two co-authorship
graphs (MS CoauthorCS andMS CoauthorPhysics) [31]. We report their statistics in Table 5.
Baseline Our baselines are PageRank [27], GCN [17], GraphSage [10], and SGCN [40]. We
generate each algorithm under UnifiedGM by setting the five parameters as follows:

• PageRank: d = 1, k = 30, w = −1, l = False, a = NA
• GCN: d = 64, k = 2, w = −1, l = True, a = SS
• GraphSAGE: d = 64, k = 2, w = 25, l = True, a = SA
• SGCN: d = 64, k = 2, w = −1, l = False, a = SS

When w is larger than the number of neighbors, we sample neighbors with replacement.
For PageRank, the original algorithm outputs the sum of intermediate scores that each node
receives (

∑
Xi ), but we use only the final scores Xk in our experiments. The goal of our

experiments is to compare PageRank with other algorithms in terms of its main feature in
UnifiedGM, low dimension (d = 1).

Bayesian optimization: We use an open-sourced Bayesian optimization package3. For the
parameters d , k, andwwhich take integer values, we round the real-valued parameters chosen
byBO to integer values. For the parameter l and a, which takeBoolean and categorical values,
we bound the search space (0 < l < 1 and 0 < a < 6), round the real-valued parameters
chosen by BO to the closest integer values, and map (0: False, 1: True, 0: NN, 1: NS, 2:
NA, 3: SN, 4: SS, 5: SA). We set the BO search budget (total number of evaluations) as
20 for all datasets. The resulting search time of each dataset is reported in Table 7. For the
penalty coefficient λ, the smaller λ brings the tighter budget constraints. To make our budget
constraints strict, we set λ as 10−19.

We use the Adam optimizer [16] and tune each baseline with a grid search on each dataset.
Most baselines perform best on most datasets with a learning rate of 0.01, weight decay of
5 × 10−4, and dropout probability of 0.5. We fix these parameters in our autonomous graph
mining algorithm search through Bayesian Optimization.We report the average performance
across 10 runs for each experiment.

3 https://github.com/fmfn/BayesianOptimization.
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6.2 Effectiveness ofAUTOGM

In this section, we demonstrate howAutoGM trades off accuracy and inference time on real-
world graphs with two different tasks, node classification and link prediction. We compare
the best algorithms found by AutoGM with baselines in terms of accuracy and inference
time. For each dataset, we runAutoGMwith three different accuracy lower bounds and three
inference time upper bounds, as illustrated in Figs. 1 and 5. For each constraint, AutoGM
generates a novel graph algorithm corresponding to a set of five parameters of UnifiedGM.
For space efficiency, we show the result on the Cora, Citeseer, and Pubmed datasets.

6.2.1 Node classification

In the node classification task, each graph mining algorithm predicts the label of a given
node. Among algorithms satisfying an accuracy lower bound, the algorithms generated by
AutoGM show the best trade-off between accuracy and inference time. For instance, in
the Citeseer dataset in Fig. 1a, AutoGM-2 has the fastest inference time above accuracy
constraint 2 among PageRank (PR), GCN, SGCN, and GraphSage. Given the highest or
tightest accuracy constraint 3, only AutoGM-3 satisfies it. Conversely, among algorithms
satisfying inference time upper bounds, the algorithms generated by AutoGM have the
highest accuracy. For instance, in the Pubmed dataset in Fig. 5d, AutoGM-1 has the highest
accuracy below time constraint 1 among PR and SGCN. Given the most generous time
constraint 3, AutoGM-3 achieves the highest accuracy among all algorithms.

The empirical performance of our baselines is consistent with our guidelines for how
to choose the parameters (d, k, w, l, a) in Sect. 3.5. PageRank achieves fast inference time
with a low dimension of messages (d = 1) and no nonlinearities (l = False), but sacrifice
accuracy. GCN and GraphSage achieve high accuracy with a high dimension of messages
(d = 64) and nonlinearities (l = True) at the cost of a high inference time. SGCN removes
nonlinearities (l = False) to decrease the inference time while maintaining high accuracy.

Table 6 shows the parameter set of UnifiedGM that corresponds to the algorithms found
by AutoGM on the Citeseer dataset. When encouraged to find higher accuracy algorithms
(through a larger time upper bound or higher accuracy lower bound), AutoGM is likely to
use high values of d and w and nonlinearities (l = True). For instance, AutoGM chooses
higher values d = 255, w = 45 for the larger time upper bound time < 0.01 than the values
d = 70, w = 25 for the bound time < 0.004. With the largest upper bound time < 0.1,
AutoGM chooses l = True to use nonlinearities. This result is consistent with our intuition
over the parameter selection in Sect. 3.5. Vastly different parameter sets for each algorithm
in Table 6 show that AutoGM searches the parameter space beyond human intuition, which
underlines the value of autonomous graph mining algorithm development.

6.2.2 Link prediction

In the link prediction task, the algorithm predicts whether there exists an edge between two
given nodes. To build our training set, we randomly hide 30% of edges in the original graph,
use the remaining edges as positive ground-truth labels, and sample an equal number of
disconnected node pairs as negative ground-truth labels. Our test set consists of the hidden
30% edges as positive ground-truth labels and an equal number of random disconnected
node pairs as negative ground-truth labels. After we get the node embeddings for a graph
algorithm, we dot-product each pair of node embeddings to predict the probability of edge
existence for the given node pair.
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Table 6 Parameters
corresponding to algorithms
found by AutoGM in Fig. 1

Dataset Budget d k w l a Time Acc

Citeseer t<0.004 70 4 25 F SA 0.0039 0.674

t<0.01 255 4 45 F SS 0.004 0.683

t<0.1 68 1 47 T SS 0.0134 0.686

a>0.58 138 1 36 F SA 0.0039 0.622

a>0.63 25 4 54 F NA 0.0039 0.665

a>0.68 39 1 10 T SS 0.0121 0.69

The Budget column denotes the constraint input toAutoGM to generate
an algorithm

Among algorithms satisfying accuracy lower bounds, the algorithms generated by
AutoGM have the fastest inference time. For instance, in the Pubmed dataset in Fig. 6e,
AutoGM-3 has the fastest inference time above accuracy constraint 3 among GCN and
GraphSage. Conversely, among algorithms satisfying inference time upper bounds, the algo-
rithms generated by AutoGM show the best trade-off between accuracy and inference time.
For instance, in the Citeseer dataset in Fig. 6d, AutoGM-1 has the highest accuracy below
time constraint 1 among PR and SGCN. A noteworthy phenomenon in the link prediction
task is that algorithms generated from AutoGM have similar inference times but diverse
accuracies. This shows that it’s easier to manipulate accuracy by designing graph algorithms,
while the dataset largely determines the inference time.

6.3 Search efficiency ofAUTOGM

AutoGM searches for the optimal graph algorithm in a five-dimensional space (d, k, w, l, a)

defined by UnifiedGM. To show the search efficiency of AutoGM, we give the same max-
imum search time and budget constraints to AutoGM and RandomSearch, then compare
the performance of the best graph algorithms each method finds. RandomSearch samples
each parameter (d, k, w, l, a) randomly and defines a graph algorithm based on the sam-
pled parameters. We set the maximum search time proportional to the size of the dataset.
The budget constraints are chosen based on the best performance among the baseline meth-
ods (PageRank, GCN, GraphSage, SGCN). We select the tightest constraints (i.e., fastest
inference time and highest accuracy among the baselines) to examine the search efficiency.

Table 7 shows the inference time and accuracy of the optimal graph algorithmsAutoGM
and RandomSearch find. RandomSearch fails to find any algorithm satisfying the given
accuracy constraints on the Cora, Pubmed, and CoauthorP datasets. It also fails to find any
algorithm satisfying the inference time constraints on the Citeseer, AmazonC, and AmazonP
datasets. When RandomSearch finds graph algorithms satisfying the given constraints, their
performance is still lower than the algorithms found by AutoGM. For instance, given the
inference timeupper bound (t < 0.02) on theCoauthorCdataset,AutoGMfinds an algorithm
with accuracy 0.83 while RandomSearch finds an algorithm with accuracy 0.75.

Table 7 presents howmuch accuracy/inference time is used under the given budgets to find
the optimal graph algorithms (column 6, 7 and 11, 12).AutoGM generates algorithmswhose
accuracy (time) is as close as possible to the given accuracy (time) budgets. For instance,
AutoGM finds the fastest graph algorithm with an accuracy of 0.8 when the accuracy lower
bound is given as 0.8 on theCoauthorCdataset. By exhausting the budget,AutoGM improves

123



M. Yoon et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 6 AutoGM finds the algorithms with the best accuracy/inference time trade-off on the link prediction
task: given three different accuracy/inference time constraints 1, 2, 3, AutoGM generates three novel graph
algorithms, AutoGM-1, 2, 3, respectively

the target metric time (accuracy) and brings the best trade-off between computation time and
accuracy.

6.4 Effect ofUNIFIEDGM parameters

In this section, we investigate the effects of parameters of UnifiedGM on the performance
of a graphmining algorithm.Given a set of parameters (d = 64, k = 2, w = −1, l = True, a = SS),
we vary one parameter while fixing the others and measure the performance of the generated
algorithm. For the experiment where we vary the aggregation parameter a, we use a different
set of parameters (d = 16, k = 2, w = 10, l = False) to better illustrate changes in accuracy and
inference time. For brevity, we show the result on the Pubmed dataset.

• Dimension d Figure 7a shows that inference time increases linearlywithd , while accuracy
increases only until d > 20. For the Pubmed dataset, 20-dimensional messages are
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(a) (b)

(c) (d)

(e)

Fig. 7 Effects of the five parameters (d, k, w, l, a) of UnifiedGM on the performance of graph algorithms
(i.e., accuracy and time)

expressive enough that the accuracy stops increasing. Larger datasets would likely benefit
from higher dimensional messages.

• Length k In Fig. 7b, when k increases, inference time increases linearly, but accuracy
decreases for k > 3. The decrease in accuracy is due to oversmoothing: repeated graph
aggregations eventually make node embeddings indistinguishable.

• Width w In Fig. 7c, when w increases, inference time increases until w > 15, but
accuracy does not change noticeably. The plateau in accuracy is due to most nodes
having few neighbors and nearby nodes sharing similar feature information, whichmakes
a single sampled node be a representative of a node’s whole neighborhood. The plateau
in inference time indicates that nodes have fewer than 15 neighbors on average on the
Pubmed dataset.

• Nonlinearity l Figure 7d shows that adding nonlinearities (l = True) increases accuracy
due to richer expressiveness, but also inference time.
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• Aggregation strategy a Figure 7e shows that the choice of aggregation strategy a has a
considerable effect on the accuracy of a graphmining algorithm. Still, we cannot conclude
that any aggregation strategy is always superior to others.

Figure 7 shows the general tendency in the effects of the parameters. Different datasets have
slightly different results (e.g., which w stops increasing accuracy or which k starts bringing
oversmoothing). This shows the need for AutoGM, which chooses the best parameter set
automatically for the dataset we employ.

6.5 Discussion

In this section, we discuss few interesting observations we find during the experiments.

• Linearmodel is fast:As shown in Sect. 6.2, linearmodels including PageRank and SGCN
are faster than nonlinear models. The fast speed of linear models does not merely come
from the absence of a nonlinear operation at each layer. Without the nonlinear operation,
multi-layers of linear transformation operations could be compressed to one layer as
follows:

X3 = φ(Aφ(AX0W0)W1)

= A(AX0W0)W1 = A2X0W∗
where φ(x) = x is a linear operation, Xi denotes hidden embeddings at the i-th layer,
A is the adjacency matrix, Wi denotes the transformation matrix at the i-th layer, and
W∗ = W0W1 is the compressed matrix. Then, in the linear model, we can precompute
A2X0 in advance and multiply it only with W∗ during training. On the other hand, in the
nonlinear model, we need to execute matrix multiplication (AXiWi ) in every layer. This
explains the fast speed of linear models compared to nonlinear models.

• Winning strategy It is hard to define a single winning strategy for graph mining algo-
rithm development that is generalizable to various graphs and applications. However,
we observe a few tendencies. High dimensions of messages generally bring high accu-
racy with a negligible increase in computation time. For instance, SGCN which has
high dimension (d = 64) shows higher accuracy than PageRank which has low dimen-
sion (d = 1) across different tasks (Figs. 5 and 6). Second, nonlinear operations are
not necessarily required for high accuracy. For example, SGCN shows comparably high
accuracy with GCN and GraphSage in both node classification and link prediction tasks.
While maintaining similar accuracy, SGCN is faster than GCN and GraphSage due to
the absence of nonlinear operations.

• Performance is affected by input graphs In Fig. 6b, d, f, the graph algorithms AutoGM-
1,2,3 that are generated by AutoGM with different time constraints show similar
inference times (sometimes even similar accuracies). The performance of graph algo-
rithms is not only decided by the algorithms but also by input graphs. When graphs are
sparse and have simple structures, the graph algorithms will have short inference times
regardless of how long inference time constraints we give to AutoGM. Likewise, when
graphs are well-clustered, and features are well-aligned with labels, the tasks become
easy, and any graph algorithms would easily get high accuracy. In Fig. 6b and d, the
algorithms generated with longer time constraints show higher accuracies while having
similar inference times. Longer time constraints allowAutoGM to explore broader scope
in the search space and find better algorithms with higher accuracies, while all algorithms
end up showing similar inference times thanks to simple input graph structures.
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7 Future work

In AutoGM, we choose Bayesian Optimization to search the parameter space. Even though
BO tries to minimize the number of evaluations, each evaluation corresponds to training
a graph mining algorithm, leading to the long computation time of AutoGM. Various
multi-fidelity methods [13, 14] have been proposed to handle this problem. They use cheap
approximations to the function of interest (in our case, budget-aware objective functions)
to speed up the overall optimization process. Multi-fidelity approaches could significantly
improve the computation time of AutoGM.

Given a graph and a target task, AutoGM receives the maximum inference time or min-
imum accuracy constraints as input, then generates an optimal graph algorithm satisfying
those constraints. How can we decide proper maximum inference time or minimum accu-
racy constraints initially? Currently, we do this by trial-and-error—we run AutoGM with
constraints either chosen randomly or from previous experimental results, then calibrate the
constraints until AutoGM finds algorithms with satisfactory inference time and accuracy.
Future work should focus on minimizing this constraint-tuning time. We can refer to the
history of constraints used on other graphs and modify them based on differences between
the referred graphs and a target graph (e.g., if a target graph is bigger than a referred graph,
we can increase the referred graph’s inference time constraint and use it for the target graph).

8 Conclusion

Graph mining is generally application-driven. The development of a new mining algorithm
is usually motivated by solving a specific real-world problem. Given how general graphs
are as an abstraction, the resulting algorithm is usually customized to a dataset, application,
and domain. Sometimes, to squeeze out the best performance, graph mining uses various
heuristics specialized to certain scenarios—0.85 for the decaying coefficient in PageRank for
web recommendation [27], 2-layeredGCNs for citation networks [10], 3-layerGCNs for open
academic graphs [12]. These heuristics make graph mining algorithms less generalizable.
Practitioners cannot simply apply existing graph algorithms to their problems but must do
trial-and-errors until they find optimal (sometimes suboptimal) algorithms for their scenarios.
This widens a gap in which state-of-the-art techniques developed in academic settings fail to
be optimally deployed in real-world applications.

This paper shows graph mining has enough room to be further generalized. Various
message-passing-based graph algorithms stem from the same intuition, homophily, applied
in different ways. Based on this shared intuition,UnifiedGM unifies graph algorithms using
five parameters of themessage-passingmechanism: the dimension of the communicatedmes-
sages, the number of neighbors to communicatewith, the number of steps to communicate for,
the nonlinearity of the communication, and the message aggregation strategy. UnifiedGM-
ext extends UnifiedGM with attention and sampling methodologies and unifies a broader
scope of graph algorithms under one framework. This unification helps users understand
which aspect of algorithms leads to different accuracy/computation time/memory efficiency
and which part of algorithms they should tune to achieve their goals. Furthermore, we auto-
mate graph mining algorithm development under this unified framework to prevent users
from running trial-and-error and reaching suboptimal algorithms. Our main contributions
are:
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• Unification UnifiedGM and UnifiedGM- ext allow conventional graph mining and
graph neural network algorithms to be unified under the same framework for the first
time, helping practitioners to understand the first principles in message-passing-based
algorithms.

• Design space for graph mining algorithms UnifiedGM provides the parameter search
space necessary to automate graph mining algorithm development.

• Automation Based on the search space defined by UnifiedGM, AutoGM finds the opti-
mal graph algorithm using Bayesian optimization.

• Budget awareness AutoGM maximizes the performance of an algorithm under a given
time/accuracy budget.

• EffectivenessAutoGM finds novel graph algorithms with the best speed/accuracy trade-
off on real-world datasets.

We hope this paper will spark further research in this direction and empower practitioners
withoutmuch expertise in graphmining to deploy graph algorithms tailored to their scenarios.
In this era of big data, new graphs and tasks are generated every day. We believe automated
graph mining will bring even more impact on a wider range of users across academia and
industry in the future.
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