
Zero-shot Transfer Learning on Heterogeneous Graphs
via Knowledge Transfer Networks

Minji Yoon
∗1
, John Palowitch

†
, Dustin Zelle

†
, Ziniu Hu

‡2
, Ruslan Salakhutdinov

∗
, Bryan Perozzi

†

∗
Carnegie Mellon University,

‡
University of California Los Angeles,

†
Google Research

{minjiy,rsalakhu}@andrew.cmu.edu,bull@cs.ucla.edu,{palowitch,dzelle,hubris}@google.com

ABSTRACT

Industrial ecosystems are commonly represented as heterogeneous

graphs (HG) composed of multiple node/edge types. Heteroge-

neous graph neural networks (HGNNs) are applied to HGs to learn

deep context-informed node representations. However, many HG

datasets from industrial applications suffer from label imbalance

between node types. As there is no direct way to learn using la-

bels rooted at different node types, HGNNs have been applied

to only a few node types with abundant labels. In this work, we

propose a zero-shot transfer learning module for HGNNs called

a Knowledge Transfer Network (KTN) that transfers knowledge

from label-abundant node types to zero-labeled node types through

rich relational information given in the HG.

KEYWORDS

Heterogeneous Graph Neural Networks; Transfer Learning

1 INTRODUCTION

To learn powerful features representing the complex multimodal

structure of heterogeneous graphs (HG), various heterogeneous

graph neural networks (HGNN) have been proposed [5, 12, 15,

17]. A common issue in industrial applications of HGNNs is the

label imbalance among different node types. For instance, publicly

available content nodes – such as those representing video, text,

and image content – are abundantly labeled, whereas labels for

other types – such as user or account nodes – may be much more

expensive to collect (e.g., due to privacy restrictions). This means

that in most standard settings, HGNN models can only learn to

make good inferences for a few label-abundant node types, and

can usually not make any inferences for the remaining node types,

given the absence of any labels for them.

If there is a pair of label-abundant and zero-labeled node types

that share an inference task, could we transfer knowledge between

them? One body of work has focused on transferring knowledge

between nodes of the same type from two different HGs (i.e., graph-
to-graph transfer learning) [6, 16]. However, these approaches are

not applicable in many real-world scenarios. First, any large-scale

external HG that could be used in a graph-to-graph transfer learn-

ing setting would almost surely be proprietary. Second, even if

practitioners could obtain access to an external industrial HG, it is

1,2
Work done while interning at Google.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

DLG’22, August 15, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).

unlikely the distribution of that (source) graph would match their

target graph well enough to apply transfer learning. Finally, node

types suffering label scarcity are likely to suffer the same issue on

other HGs (e.g., user nodes).

In this paper, we introduce a zero-shot transfer learning approach

for a single HG (assumed to be fully owned by the practitioners),

transferring knowledge from labelled to unlabeled node types. This

setting is distinct from any graph-to-graph transfer learning sce-

narios since the source and target domains exist in the same HG

dataset and are assumed to have different node types. Our model uti-

lizes the shared context between source and target node types; for

instance, in an e-commerce network, the latent (unknown) labels

of user nodes can be strongly correlated with spending/reviewing

patterns that are encoded in the cross-edges between user nodes

and product/review nodes. We propose a novel zero-shot transfer

learning problem for this HG learning setting as follows:

ProblemDefinition 1. Zero-shot transfer learning for cross-

type inference on a HG: Given a HG with node types {s, t, · · · }
with abundant labels for source type s but no labels for target type t,
can we train HGNNs to infer the labels of target-type nodes?

To solve this problem, we first analyze that HGNNs learn entirely

different feature extractors for nodes and edges of different types

and present some empirical consequences. Then we theoretically

show how feature extractors across node types relate to each other

and how their output distributions could be represented in terms

of each other. We model this theoretical relationship between two

feature extractors as a Knowledge Transfer Network (KTN), which

can be optimized to transform target embeddings to fit the source

domain distribution. Our main contributions are:

• Novel and practical problem definition: To the best of our

knowledge, KTN is the first cross-type transfer learning method

designed for heterogeneous graphs.

• Generality: KTN is a principled approach analytically induced

from the architecture of HGNNs, thus applicable to any HGNN

models, showing up to 960% performance improvement for zero-

labeled node inference across 6 different HGNN models.

• Effectiveness: We show that KTN outperforms state-of-the-art

transfer learning methods, being up to 73.3% higher in MRR on

8 different transfer learning tasks on HGs.

2 RELATEDWORK

Here we cover two classes of learning approaches that are related

to KTN, but are ultimately distinct and fall short of a fully-rigorous

approach to zero-shot cross-type inference in HGs.

Zero-shot domain adaptation (DA) transfers knowledge from a

source domain with abundant labels to a target domain that follows

DLG’22, August 15, 2022, Washington, DC, USA M. Yoon, et al.

a similar distribution to the source domain but lacks labels. MMD-

based DAmethods [8, 10, 14] minimize the maximummean discrep-

ancy (MMD) [4] between the mean embeddings of two distributions

in reproducing kernel Hilbert space. Adversarial DA methods [2, 9]

learn domain-invariant features by a min-max game between the

domain classifier and the feature extractor. Optimal transport-based

DA methods [13] estimate the empirical Wasserstein distance [11]

between two domains and minimize the distance in an adversarial

manner. Due to the assumption that source and target domains

have the same modality, the standard DA setting assumes identical

feature extractors across source and target domains.

Label propagation (LP) [19] passes each node’s labels to their

neighbors according to normalized edge weights. LP relies on only

a graph’s edges and is therefore easily applied to a heterogeneous

graph – labels are simply propagated across edges, regardless of

type. In this paper, we also evaluate a similarly-simple baseline, em-

bedding propagation (EP). Similar to LP, EP recursively propagates

source embeddings (computed using source labels) until they reach

the target nodes. EP exploits both node attribute information and

the node adjacencies but only uses the source node embeddings.

3 PRELIMINARIES

In this section, we review heterogeneous graphs and heterogeneous

graph neural networks (HGNNs).

3.1 Heterogeneous graph

Heterogeneous graphs (HGs) are an important abstraction for mod-

eling the relational data of multi-modal systems. Formally, a het-

erogeneous graph is defined as G = (V, E,T ,R) where the node
set V; the edge set E; the set of node types T with associated

map 𝜏 : V ↦→ T ; the set of relation types R with associated map

𝜙 : E ↦→ R. We additionally assume the existence of a node at-

tribute vector 𝑥𝑖 ∈ X𝜏 (𝑖) for each 𝑖 ∈ V , where X𝑡 is an attribute

space specific to nodes of type 𝑡 . This allows G to represent nodes

with different attribute modalities such as images, text, or booleans.

3.2 Heterogeneous Graph Neural Networks

Various HGNN models have been proposed [5, 12, 15, 17]. Fully-

specified HGNN models have specialized parameters for each node

type [5], edge type [12], and meta-path type [1] to most effectively

utilize the complex relationships encoded in the HG data structure.

In this paper, we use a flavor of HGNN known as a Heterogeneous

Message-Passing Neural Network (HMPNN) as our base model on

which to demonstrate KTN (though KTN can be implemented in

almost any HGNN, as we show in experiments in Section 6). The

HMPNN merely extends the standard MPNN [3] by specializing

all transformation and message matrices in each node/edge type.

With its generality, HMPNN is itself a base model for RGCN [12]

and HGT [5], and is also widely used as a default HGNN model in

popular GNN libraries (e.g., pyG, TF-GNN, DGL).

In a HMPNN, for any node 𝑗 , the embedding of node 𝑗 at the 𝑙-th
layer is obtained with the following generic formulation:

ℎ
(𝑙)
𝑗

= Transform
(𝑙)

(
Aggregate

(𝑙) (E (𝑗))
)

(1)

where E(𝑗) = {(𝑖, 𝑗) ∈ E : 𝑖, 𝑗 ∈ V} denotes all the edges which
connect (directionally) to 𝑗 . The above operations typically involve

type-specific parameters to exploit the inherent multiplicity of

modalities in heterogeneous graphs. First, we define a linear Mes-

sage function:

Message
(𝑙) (𝑖, 𝑗) = 𝑀

(𝑙)
𝜙 ((𝑖,𝑗)) ·

(
ℎ
(𝑙−1)
𝑖

∥ ℎ (𝑙−1)
𝑗

)
(2)

where𝑀
(𝑙)
𝑟 are the specific message passing parameters for each

𝑟 ∈ R and each of 𝐿 GNN layers. Then defining E𝑟 (𝑗) as the set
of edges of type 𝑟 pointing to node 𝑗 , the Aggregate function

mean-pools messages by edge type, and concatenates:

Aggregate
(𝑙) (E (𝑗)) = ∥

𝑟∈R
1

|E𝑟 (𝑗) |

∑︁
𝑒∈E𝑟 (𝑗)

Message
(𝑙) (𝑒) (3)

Finally, the Transform function maps the message into a type-

specific latent space:

Transform
(𝑙) (𝑗) = 𝛼 (𝑊 (𝑙)

𝜏 (𝑗) · Aggregate
(𝑙) (E (𝑗))) (4)

By stacking 𝐿 layers, HMPNN outputs highly contextualized final

node representations, and the final node representations can be fed

into another model to perform downstream heterogeneous network

tasks, such as node classification or link prediction.

4 CROSS-TYPE FEATURE EXTRACTOR

TRANSFORMATIONS IN HGNNS

We define 𝑓𝑡 : G ↦→ R𝑑 to be the “feature extractor" of an HGNN,

which is composed of parameters participating in mapping input

node attributes of type 𝑡 into a shared feature space R𝑑 . In this

section, we derive a strict transformation between feature extractors

in HMPNNs and use that expression to inspire a trainable transfer

learning module called KTN in the following section. For simplicity,

throughout this section we ignore the activation 𝛼 (·) within the

Transform function in Equation (4).

4.1 Feature extractors in HMPNNs

We first reason intuitively about the differences between 𝑓𝑠 and

𝑓𝑡 when 𝑠 ≠ 𝑡 , using a toy heterogeneous graph shown in Fig-

ure 1(a). Consider nodes 𝑣1 and 𝑣2, noticing that 𝜏 (1) ≠ 𝜏 (2).
Using HMPNN’s equations (2)-(4) from Section 3.2, for any 𝑙 ∈
{0, . . . , 𝐿 − 1} we have

ℎ
(𝑙)
1

=𝑊
(𝑙)
𝑠

[
𝑀

(𝑙)
𝑠𝑠

(
ℎ
(𝑙−1)
3

∥ ℎ (𝑙−1)
1

)
∥ 𝑀 (𝑙)

𝑡𝑠

(
ℎ
(𝑙−1)
2

∥ ℎ (𝑙−1)
1

)]
(5)

ℎ
(𝑙)
2

=𝑊
(𝑙)
𝑡

[
𝑀

(𝑙)
𝑠𝑡

(
ℎ
(𝑙−1)
1

∥ ℎ (𝑙−1)
2

)
∥ 𝑀 (𝑙)

𝑡𝑡

(
ℎ
(𝑙−1)
4

∥ ℎ (𝑙−1)
2

)]
(6)

where ℎ
(0)
𝑗

= 𝑥 𝑗 . From these equations, we see that ℎ
(𝑙)
1

and ℎ
(𝑙)
2

,

which are features of different node types, are extracted using

disjoint sets of model parameters at 𝑙-th layer. In a 2-layer HMPNN,

this creates unique gradient backpropagation paths between the

two node types, as illustrated in Figures 1(b)-1(c). In other words,

even though the same HMPNN is applied to node types 𝑠 and 𝑡 ,

the feature extractors 𝑓𝑠 and 𝑓𝑡 have different computational paths.

Therefore they project node features into different latent spaces,

and have different update equations during training.

4.2 Empirical gap between 𝑓𝑠 and 𝑓𝑡

Here we study the experimental consequences of the above observa-

tion via simulation. We first construct a synthetic graph extending

the 2-type graph in Figure 1(a) to have multiple nodes per-type

Zero-shot Transfer Learning on Heterogeneous Graphs
via Knowledge Transfer Networks DLG’22, August 15, 2022, Washington, DC, USA

(a) Toy graph (b) Gradient path for feature extractor 𝑓𝑠 (c) Gradient path for feature extractor 𝑓𝑡

Figure 1: Illustration of a toy heterogeneous graph and the gradient paths for feature extractors 𝑓𝑠 and 𝑓𝑡 . Colored arrows in figures (b) and (c)

show that the same HGNN nonetheless produces different gradient paths for each feature extractor. The color density of each box in (b) and (c)

is proportional to the degree of participation of the corresponding parameter in each feature extractor.

(a) Test accuracy across various feature extractors (b) L2 norms of gradients of𝑊𝜏 (·) (c) L2 norms of gradients of𝑀𝜙 (·)

Figure 2: An HGNN trained on a source domain underfits a target domain even on a “nice" heterogeneous graph. (a) Performance on the

simulated heterogeneous graph for 4 kinds of feature extractors (source: source extractor 𝑓𝑠 on source domain, target-src-path: source extractor
𝑓𝑠 on target domain, target-org-path: target extractor 𝑓𝑡 on target domain, and theoretical-KTN : target extractor 𝑓𝑡 on target domain using KTN).

(b-c) L2 norms of gradients of parameters𝑊𝜏 (·) and𝑀𝜙 (·) in the HGNN.

and multiple classes. To maximize the effects of having different

feature extractors, we sample source and target nodes from the

same feature distributions, and each class is well-separated in both

the graph and feature space.

On such a well-aligned heterogeneous graph, there may seem

to be no need for transfer learning from 𝑓𝑡 to 𝑓𝑠 . However, when

we train the HMPNN model solely on 𝑠-type nodes, as shown in

Figure 2(a) we find the test accuracy for 𝑠-type nodes to be high

(90%, blue line), and the test accuracy for 𝑡-type nodes to be quite

low (25%, green line). Now, if, instead, we make the 𝑡-type nodes

use the source feature extractor 𝑓𝑠 , much more transfer learning is

possible (∼65%, orange line). This shows that the different feature
extractors present in the HMPNN model result in a significant

performance drop, and simply matching input data distributions

can not solve the problem.

To analyze this phenomenon at the level of backpropagation,

in Figures 2(b)-2(c) we show the magnitude of gradients passed to

parameters of each node types. We find that the final-layer param-

eters for type-𝑡 nodes (𝑊
(2)
𝑡 , 𝑀

(2)
𝑠𝑡 and𝑀

(2)
𝑡𝑡) have zero gradients,

and the first-layer parameters for 𝑡-type nodes (𝑊
(1)
𝑡 , 𝑀

(1)
𝑠𝑡 and

𝑀
(1)
𝑡𝑡) have much smaller gradients than their 𝑠-type counterparts

(𝑊
(1)
𝑠 , 𝑀

(1)
𝑡𝑠 and 𝑀

(1)
𝑠𝑠). This is because they contribute to 𝑓𝑠 less

than 𝑓𝑡 .

This case study shows that even when an HGNN is trained on

a relatively simple, balanced, and class-separated heterogeneous

graph, a model trained only on the source domain node type cannot

transfer to the target domain node type.

4.3 Relationship between feature extractors

Here, we derive a strict transformation between 𝑓𝑠 and 𝑓𝑡 , which

will motivate the core transfer learning component of our proposed

KTN model.

Theorem 4.1. Given a heterogeneous graph G = {V, E,T ,R}.
For any layer 𝑙 > 0, define the set of (𝑙 − 1)-th layer HMPNN param-
eters as

Q (𝑙−1) = {𝑀 (𝑙−1)
𝑟 : 𝑟 ∈ R} ∪ {𝑊 (𝑙−1)

𝑡 : 𝑡 ∈ T}. (7)

Let 𝐴 be the total 𝑛 × 𝑛 adjacency matrix. Then for any 𝑠, 𝑡 ∈ T
there exist matrices 𝐴∗

𝑡𝑠 = 𝑎𝑡𝑠 (𝐴) and 𝑄∗
𝑡𝑠 = 𝑞𝑡𝑠 (Q (𝑙−1)) such that

𝐻
(𝑙)
𝑠 = 𝐴∗

𝑡𝑠𝐻
(𝑙)
𝑡 𝑄∗

𝑡𝑠 (8)

where 𝑎𝑡𝑠 (·) and 𝑞𝑡𝑠 (·) are matrix functions that depend only on 𝑠, 𝑡 .

Sketch of Proof. 𝑓𝑠 and 𝑓𝑡 are built inside one HMPNN model and

interchange intermediate feature embeddings with each other. Both

𝐻
(𝑙)
𝑠 and𝐻

(𝑙)
𝑡 are computed using the previous layer’s intermediate

embeddings 𝐻
(𝑙−1)
𝑠 , 𝐻

(𝑙−1)
𝑡 , and any other connected node type

embeddings 𝐻
(𝑙−1)
𝑥 at the 𝑙-th HMPNN layer. Therefore 𝐻

(𝑙)
𝑠 and

𝐻
(𝑙)
𝑡 can bemathematically presented by each other using the (𝑙−1)-

th layer embeddings as connecting points. Using this intuition and

HMPNN’s equations, we can easily prove Theorem 4.1.

DLG’22, August 15, 2022, Washington, DC, USA M. Yoon, et al.

Notice that in Equation 8, 𝑄∗
𝑡𝑠 acts as a mapping matrix that

maps𝐻
(𝐿)
𝑡 into the source domain, then𝐴∗

𝑡𝑠 aggregates the mapped

embeddings into 𝑠-type nodes. To examine the implications, we

run the same experiment as described in Section 4.2, while this

time mapping the target features 𝐻
(𝐿)
𝑡 into the source domain

by multiplying with 𝑄∗
𝑡𝑠 in Equation 8 before passing over to a

task classifier. We see via the red line in Figure 2(a) that, with this

mapping, the accuracy in the target domain becomes much closer

to the accuracy in the source domain (∼70%). Thus, we use this
theoretical transformation as a foundation for our trainable HGNN

transfer learning module.

5 KTN: TRAINABLE CROSS-TYPE TRANSFER

LEARNING MODULE FOR HGNNS

We begin by noting Equation 8 in Theorem 4.1 has a similar form to

a single-layer graph convolutional network [7] with a deterministic

transformation matrix (𝑄∗
𝑡𝑠) and a combination of adjacency matri-

ces directing from target node type 𝑡 to source node type 𝑠 (𝐴∗
𝑡𝑠).

Instead of hand-computing the mapping function 𝑄∗
𝑡𝑠 for arbitrary

HGs and HGNNs, we learn the mapping function by modelling

Equation 8 as a trainable graph convolutional network, named the

Knowledge Transfer Network, tKTN (·). KTN replaces 𝑄∗
𝑡𝑠 and 𝐴

∗
𝑡𝑠

in Equation 8 as follows:

tKTN (𝐻 (𝐿)
𝑡) = 𝐴𝑡𝑠𝐻

(𝐿)
𝑡 𝑇𝑡𝑠 (9)

LKTN =

𝐻 (𝐿)
𝑠 − tKTN (𝐻 (𝐿)

𝑡)

2

(10)

where 𝐴𝑡𝑠 is an adjacency matrix from node type 𝑡 to 𝑠 , and 𝑇𝑡𝑠
is a trainable transformation matrix. By minimizing LKTN, 𝑇𝑡𝑠 is

optimized to a mapping function of the target domain into the

source domain.

5.1 Algorithm

We minimize a classification loss LCL and a transfer loss LKTN

jointly with regard to a HGNN model f, a classifier g, and a knowl-

edge transfer network tKTN as follows:

𝑚𝑖𝑛
f, g, tKTN

LCL (g(f(𝑋𝑠)), 𝑌𝑠) + 𝜆 ∥f(𝑋𝑠) − tKTN (f(𝑋𝑡))∥2

where 𝜆 is a hyperparameter regulating the effect of LKTN. During

a training step on the source domain, after computing the node

embeddings 𝐻
(𝐿)
𝑠 and 𝐻

(𝐿)
𝑡 , we map 𝐻

(𝐿)
𝑡 to the source domain

using tKTN and compute LKTN. Then, we update the models using

gradients of LCL (computed using only source labels) and LKTN.

During the test phase on the target domain, after we get node

embeddings 𝐻
(𝐿)
𝑡 from the trained HGNN model, we map 𝐻

(𝐿)
𝑡

into the source domain using the trained transformation matrix𝑇𝑡𝑠 .

Finally we pass the transformed target embeddings (𝐻
(𝐿)
𝑡 𝑇𝑡𝑠) into

the classifier which was trained on the source domain.

6 EXPERIMENTS

6.1 Datasets

Open Academic Graph (OAG) [18] is composed of five types of

nodes: papers, authors, institutions, venues, fields, and their cor-

responding relationships. Paper and author nodes have text-based

attributes, while institution, venue, and field nodes have text- and

graph structure-based attributes. Paper, author, and venue nodes

are labeled with research fields in two hierarchical levels, L1 and

L2.

6.2 Baselines

We compare KTN with 6 Zero-shot DAmethods (DAN [8], JAN [10],

DANN [2], CDAN [9], CDAN-E [9], and WDGRL [13]), and two

traditional graph mining methods (LP and EP [19]).

6.3 Zero-shot transfer learning

We run 8 different zero-shot transfer learning tasks on the OAG

graph. We run each experiment 3 times and report the average

value. Each heterogeneous graph has node classification tasks for

both source and target node types. Only source node types have

labels, while target node types have none during training. The

performance is evaluated by NDCG and MRR — widely adopted

ranking metrics [5]. We use HMPNN as a base HGNN model.

In Table 1, our proposed method KTN consistently outperforms

all baselines on all tasks by up to 73.3% higher in MRR. When we

compare with the base accuracy using the model pretrained on the

source domain without any transfer learning (3rd column, Base), the
results are even more impressive. We see our method KTN provides

relative gains of up to 340% higher MRR without using any labels

from the target domain. These results show the clear effectiveness

of KTN on zero-shot transfer learning tasks on a heterogeneous

graph.

6.4 Generality of KTN

Here, we use 6 different HGNN models, R-GCN [12], HAN [15],

HGT [5], MAGNN [1], MPNN [3], and HMPNN. MPNN maps all

node types to the shared embedding space using projection matri-

ces at the beginning and then applies MPNN layers designed for

homogeneous graphs. In Table 2, KTN improves accuracy on the

target nodes across all HGNN models by up to 960%. This shows

the strong generality of KTN.

7 CONCLUSION

In this work, we proposed the first cross-type zero-shot transfer

learning method for heterogeneous graphs. Our method, Knowl-

edge Transfer Networks (KTN) for Heterogeneous Graph Neural

Networks, transfers knowledge from label-abundant node types to
label-scarce node types. We illustrate KTN handily improves HGNN

performances up to 960% for zero-labeled node types across 6 dif-

ferent HGNN models and outperforms many challenging baselines

up to 73% higher in MRR.

REFERENCES

[1] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. Magnn: Metap-

ath aggregated graph neural network for heterogeneous graph embedding. In

Proceedings of The Web Conference 2020. 2331–2341.
[2] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo

Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016.

Domain-adversarial training of neural networks. The journal of machine learning
research 17, 1 (2016), 2096–2030.

[3] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

Zero-shot Transfer Learning on Heterogeneous Graphs
via Knowledge Transfer Networks DLG’22, August 15, 2022, Washington, DC, USA

Table 1: Open Academic Graph on Computer Science field. The gain column shows the relative gain of our method over using no transfer

learning (Base column). o.o.m denotes out-of-memory errors.

Task Metric Base DAN JAN DANN CDAN CDAN-E WDGRL LP EP KTN (gain)

P-A (L1)

NDCG 0.399 0.452 0.405 0.292 0.262 0.261 0.260 0.178 0.425 0.623 (56%)

MRR 0.297 0.361 0.314 0.179 0.129 0.111 0.138 0.041 0.363 0.629 (112%)

A-P (L1)

NDCG 0.401 0.566 0.598 0.294 0.364 0.246 0.195 0.153 0.557 0.733 (83%)

MRR 0.318 0.508 0.544 0.229 0.270 0.090 0.047 0.022 0.507 0.711 (123%)

A-V (L1)

NDCG 0.459 0.457 0.470 0.382 0.346 0.359 0.403 0.207 0.461 0.671 (46%)

MRR 0.364 0.413 0.458 0.341 0.205 0.253 0.327 0.011 0.389 0.698 (92%)

V-A (L1)

NDCG 0.283 0.443 0.435 0.242 0.372 0.418 0.272 0.153 0.154 0.584 (107%)

MRR 0.133 0.365 0.345 0.094 0.241 0.444 0.144 0.006 0.006 0.586 (340%)

P-A (L2)

NDCG 0.229 0.230 o.o.m 0.239 o.o.m o.o.m 0.168 o.o.m 0.215 0.282 (23%)

MRR 0.121 0.118 o.o.m 0.140 o.o.m o.o.m 0.020 o.o.m 0.143 0.2248 (86%)

A-P (L2)

NDCG 0.197 0.162 o.o.m 0.204 0.158 0.161 0.132 o.o.m 0.208 0.287 (46%)

MRR 0.095 0.052 o.o.m 0.106 0.032 0.045 0.017 o.o.m 0.132 0.242 (155%)

A-V (L2)

NDCG 0.347 0.329 0.295 0.325 0.288 0.273 0.289 o.o.m 0.297 0.402 (16%)

MRR 0.310 0.296 0.198 0.223 0.128 0.097 0.110 o.o.m 0.227 0.399 (29%)

V-A (L2)

NDCG 0.235 0.249 0.251 0.214 0.197 0.205 0.217 o.o.m 0.119 0.252 (7%)

MRR 0.129 0.157 0.161 0.090 0.044 0.068 0.085 o.o.m 0.000 0.166 (28%)

Table 2: KTN on different HGNN models. Source column shows accuracy for source node types. Base and KTN columns show accuracy for

target node types without/with using KTN, respectively. Gain column shows the relative gain of our method over using no transfer learning.

P-A (L1) A-P (L1)

HGNN type Metric Source Base KTN Gain Source Base KTN Gain

R-GCN NDCG 0.765 0.337 0.577 71.12% 0.648 0.388 0.647 66.82%

MRR 0.757 0.236 0.587 148.73% 0.623 0.270 0.611 126.18%

HAN NDCG 0.476 0.179 0.520 190.56% 0.515 0.182 0.512 181.33%

MRR 0.416 0.047 0.497 960.55% 0.509 0.055 0.527 850.90%

HGT NDCG 0.757 0.294 0.574 95.07% 0.670 0.283 0.581 104.83%

MRR 0.749 0.178 0.563 216.17% 0.670 0.149 0.565 279.52%

MAGNN NDCG 0.657 0.463 0.574 24.01% 0.676 0.557 0.622 11.68%

MRR 0.631 0.378 0.556 47.33% 0.680 0.509 0.592 16.14%

MPNN NDCG 0.602 0.443 0.590 33.11% 0.646 0.307 0.621 101.92%

MRR 0.572 0.319 0.575 80.10% 0.660 0.145 0.595 311.42%

HMPNN NDCG 0.789 0.399 0.623 56.14% 0.671 0.401 0.733 82.88%

MRR 0.777 0.297 0.629 111.86% 0.661 0.318 0.711 123.30%

[4] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and

Alexander Smola. 2012. A kernel two-sample test. The Journal of Machine
Learning Research 13, 1 (2012), 723–773.

[5] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous

graph transformer. In Proceedings of The Web Conference 2020. 2704–2710.
[6] Tiancheng Huang, Ke Xu, and Donglin Wang. 2020. DA-HGT: Domain Adaptive

Heterogeneous Graph Transformer. arXiv preprint arXiv:2012.05688 (2020).
[7] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[8] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning

transferable features with deep adaptation networks. In International conference
on machine learning. PMLR, 97–105.

[9] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. 2017.

Conditional adversarial domain adaptation. arXiv preprint arXiv:1705.10667
(2017).

[10] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2017. Deep

transfer learning with joint adaptation networks. In International conference on
machine learning. PMLR, 2208–2217.

[11] Ievgen Redko, Amaury Habrard, and Marc Sebban. 2017. Theoretical analysis

of domain adaptation with optimal transport. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer, 737–753.

[12] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan

Titov, and Max Welling. 2018. Modeling relational data with graph convolutional

networks. In European semantic web conference. Springer, 593–607.

[13] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. 2018. Wasserstein distance

guided representation learning for domain adaptation. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[14] Baochen Sun, Jiashi Feng, and Kate Saenko. 2016. Return of frustratingly easy

domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 30.

[15] XiaoWang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu.

2019. Heterogeneous graph attention network. In TheWorldWideWeb Conference.
2022–2032.

[16] Shuwen Yang, Guojie Song, Yilun Jin, and Lun Du. 2021. Domain adaptive classi-

fication on heterogeneous information networks. In Proceedings of the Twenty-
Ninth International Conference on International Joint Conferences on Artificial
Intelligence. 1410–1416.

[17] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V

Chawla. 2019. Heterogeneous graph neural network. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
793–803.

[18] Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao

Gu, Yan Wang, Bin Shao, Rui Li, et al. 2019. Oag: Toward linking large-scale

heterogeneous entity graphs. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2585–2595.

[19] Xiaojin Zhu. 2005. Semi-supervised learning with graphs. Carnegie Mellon

University.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Heterogeneous graph
	3.2 Heterogeneous Graph Neural Networks

	4 Cross-Type Feature Extractor Transformations in HGNNs
	4.1 Feature extractors in HMPNNs
	4.2 Empirical gap between fs and ft
	4.3 Relationship between feature extractors

	5 KTN: Trainable Cross-Type Transfer Learning Module for HGNNs
	5.1 Algorithm

	6 Experiments
	6.1 Datasets
	6.2 Baselines
	6.3 Zero-shot transfer learning
	6.4 Generality of KTN

	7 Conclusion
	References

