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Motivation

n Measuring similarity score between two nodes 
in a graph
q Various applications across different domains
q Ranking, Community detection, Link prediction, and 

Anomaly Detection.
n Random Walk with Restart (RWR) 

q Consider the global network from a particular user’s 
point of view
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Random Walk with Restart

n A random surfer 
q Start at seed node
q Walk along edges with probability (1 − 𝑐)
q Jump back to the seed node with probability 𝑐

Seed�
Node

probability�(1-c)
probability�c
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Challenges

n Majority of RWR methods have focused on 
static graphs

n Many real-world graphs are dynamic
q Facebook: +5 users/second
q World Wide Web: ±600,000 webpages/second

n RWR computation on dynamic graphs
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Problem Definition
: Dynamic RWR

n Given: previous RWR vector 𝐫𝒐𝒍𝒅, row-normalized adjacency 
matrix "𝐀, update in "𝐀: ∆𝐀, seed node s, restart probability 𝑐

𝐫$%& = 1 − 𝑐 "𝐀𝐓𝐫$%& + 𝑐𝒒(

n Find: updated RWR vector 𝐫𝒏𝒆𝒘 of updated graph "𝐀 + ∆𝐀
which satisfice the following equation:

𝐫!"# = 1 − 𝑐 ('𝐀 + ∆𝐀)𝐓𝐫!"# + 𝑐𝒒%
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Problem Definition
: Dynamic RWR

n Input: 
q 𝐫$%& ∈ ℝ!×#: previous RWR score vector
q "𝐀 ∈ ℝ,×,: row-normalized adjacency matrix of graph 𝐺
q &𝐁 ∈ ℝ!×!: row-normalized adjacency matrix of updated     

graph 𝐺 + ∆𝐺
n ∆𝐀 = %𝐁 - %𝐀, difference between %𝐀 and %𝐁

q 𝐪# ∈ ℝ!×$: seed vector (𝑠-th unit vector)
q 𝑐 ∈ ℝ: restart probability

n Output: 
q 𝐫./0 ∈ ℝ!×#: updated RWR score vector
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CPI: Cumulative Power Iteration
n Static RWR computation method
n Re-interpretation of RWR 
n Propagation of scores across a graph

1) Score 𝑐 is generated from the seed node
2) At each step, scores are divided evenly into out-

edges with decaying coefficient (1 − 𝑐)
3) Each node accumulates scores they have received
4) Accumulated scores become RWR score of each 

node
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CPI: Cumulative Power Iteration

n 𝐱(𝒊) ∈ ℝ𝒏×𝟏
n Interim score vector computed from 𝑖th iteration
n Have scores propagated across nodes at 𝑖th iteration as 

entries

1) Initial score c at seed node

2) scores are 
divided evenly 
into out-edges 
with (1-c)3) CPI accumulate interim scores 

of each node to get final results
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Score Propagation on Dynamic Graph

C
DELETE (∆G)

More scores would be 
propagated from A to C
:  12XA → 13XA

A B
score xA

n RWR scores of nodes are determined by 
arrangement of edges
1. When the graph G is updated with ∆G
2. Propagation of scores around ∆G is changed 
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3. These small changes are propagated
4. Affect previous propagation pattern across whole 

graph
5. Finally lead to 𝐫*+, different from 𝐫-./

C
DELETE (∆G)

A B

Score Propagation on Dynamic Graph

The changes are propagated
: ( 1

2
XA ×

1
2

) → ( 1
3
XA ×

1
2

)
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OSP: Offset Score Propagation

1. Calculate an offset seed vector 𝐪𝒐𝒇𝒇𝒔𝒆𝒕
2. Propagate the offset scores across G+∆G to get 

an offset score vector 𝐫𝒐𝒇𝒇𝒔𝒆𝒕
3. Finally, OSP adds up 𝐫𝒐𝒍𝒅 and 𝐫𝒐𝒇𝒇𝒔𝒆𝒕 to get 𝒓789

Convergence:�Lemma3.1
Exactness:�Theorem3.2
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OSP-T: OSP with Trade-off

n Approximate method for dynamic RWR 
n Use the same algorithm with OSP 
n Regulates accuracy and speed using 

higher error tolerance parameter ε
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OSP-T: OSP with Trade-off

n Time complexity (Theorem 3.3)

n Error bound (Theorem 3.4)
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OSP-T: OSP with Trade-off

n Previous Methods: TrackingPPR[1], LazyForward[2]

q Fail to provide theoretical accuracy bound 
q Narrow down the scope of time complexity analysis

n ∆G only with insertion of edges
n ∆G on undirected graphs. 

[1] Naoto Ohsaka, Takanori Maehara, and Kenichi Kawarabayashi, Efficient PageRank tracking in evolving 
networks, In Proceedings of the 21th ACM SIGKDD
[2] Hongyang Zhang, Peter Lofgren, and Ashish Goel, Approximate Personalized PageRank on Dynamic 
Graphs, In Proceedings of the 22th ACM SIGKDD



Minji Yoon (SNU) 17

Discussion: Fast Convergence
n OSP,OSP-T, and CPI 

q Same upper bound O(m) for # visited edges / iteration 
n In practice, OSP and OSP-T visit only small 

portion of edges:  

When !𝐁 is multiplied with 𝐪𝐨𝐟𝐟𝐬𝐞𝐭 in CPI, 
only small number of edges in !𝐁 would be visited

Unit Vector

Sparse Matrix with small update

Small�L1�length�of�𝒒𝐨𝐟𝐟𝐬𝐞𝐭 leads�to�small�computation!!�
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Discussion: Fast Convergence

n # edges of LiveJournal dataset: 34,681,189
n OSP and OSP-T visit only small portion of 

edges in the graph 
q Converge much faster than CPI does 
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Discussion: Effects of ∆G

n Two factors in ∆G: theoretical analysis in Section 3.3
q How many nodes are modified?
q Which nodes are modified?

1. How many nodes are modified? 
q Size of ∆G

Larger size of ∆G 
=> Denser ∆𝐀
=> Larger L1 length of  𝐪$%%&'(
=> Longer computation time for 𝐱$%%&'((𝑖)
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Discussion: Effects of ∆G

2. Which nodes are modified?
q Location of ∆G => Location of nonzeros in ∆A(= *𝐁 - *𝐀)

q Nonzeros in ∆A with high RWR nodes in 𝐫!"#
n Large 𝐪$%%&'( => Running time skyrockets

q Nonzeros in ∆A with low RWR nodes in 𝐫!"#
n Small 𝐪$%%&'( => OSP-T converges quickly

q Real-world graphs follow power-law degree distribution
n Few nodes having high RWR scores 
n Majority of nodes having low scores 
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Experimental Questions
n Q1. Performance of OSP
n Q2. Performance of OSP-T
n Q3. Effects of ∆G : size and location
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Experimental Settings
n Machine: single workstation with 512GB memory
n Datasets: large-scale real-world graph data
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Q1. Performance of OSP
n How much does OSP improve performance for 

dynamic RWR computation from baseline static 
method CPI? 

n Running time for tracking RWR exactly on a 
dynamic graph G varying the size of ∆G
q Initial graph G with all its edges 
q Modify G by deleting edges.

n 1 edges to 105 edges
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Q1. Performance of OSP
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Q2. Performance of OSP-T
n How much does OSP-T enhance computation 

efficiency, accuracy compared with its 
competitors? 

n Experimental setting
q Generate a uniformly random edge stream and divide 

the stream into two parts
q Extract 10 snapshots from the second part
q Initialize a graph with the first part of the stream
q Update the graph for each new snapshot arrival
q At the end of the updates, compare each algorithm. 



Minji Yoon (SNU) 27

Q2. Performance of OSP-T
n Trade-off between accuracy and running time
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Q3. Effects of ∆G - Size
n How does size of ∆G affect the performance of 

OSP-T? 
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Q3. Effects of ∆G - Location
n Experimental setting

q Divide nodes evenly into 100 groups in the order of 
RWR scores. 

q Sample 10 nodes from each group.
q For each sampled node 𝑢, delete an edge (𝑢, 𝑣)
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Conclusion
n OSP (Offset Score Propagation)

1. Calculate offset scores around the modified edges
2. Propagate the offset scores across the updated graph
3. Merge them with previous RWR scores to get updated 

RWR scores 

n Main Results
q Exactness of OSP 
q Error bound and time complexity of OSP-T 
q Faster and more accurate RWR computation than other 

methods on Dynamic graphs
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Thank you !

Codes & datasets
http://datalab.snu.ac.kr/osp


