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Motivation

s Measuring similarity score between two nodes
iIn a graph
0 Various applications across different domains

o Ranking, Community detection, Link prediction, and
Anomaly Detection.

s Random Walk with Restart (RWR)

o Consider the global network from a particular user’'s
point of view

Minji Yoon (SNU) 3



Random Walk with Restart

= A random surfer
o Start at seed node
o Walk along edges with probability (1 — ¢)
o Jump back to the seed node with probability ¢
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Challenges

s Majority of RWR methods have focused on
static graphs

s Many real-world graphs are dynamic

o Facebook: +5 users/second
o World Wide Web: +600,000 webpages/second

s RWR computation on dynamic graphs

Minji Yoon (SNU)



Problem Definition
: Dynamic RWR

s Given: previous RWR vector r,;4, row-normalized adjacency
matrix A, update in A: AA, seed node s, restart probability ¢

Iolg = (1 — C)KTrold + Cqs

s Find: updated RWR vector r,,.,, of updated graph A + AA
which satisfice the following equation:

Fhew = (1 — C)(K + AA)Trnew + Cq

Minji Yoon (SNU) 6



e Problem Definition
: Dynamic RWR

= Input:
0 TIgq € R™: previous RWR score vector
o A € R™™: row-normalized adjacency matrix of graph G

o B € R™": row-normalized adjacency matrix of updated
graph G + AG
s AA =B - A, difference between A and B

o g5 € R™1: seed vector (s-th unit vector)
o ¢ € R: restart probability

= Output:

0 Ipew € R™: updated RWR score vector
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IS
A
*=CPI: Cumulative Power Iteration

s Static RWR computation method
m Re-interpretation of RWR

m Propagation of scores across a graph
1) Score c is generated from the seed node
2) At each step, scores are divided evenly into out-
edges with decaying coefficient (1 — c¢)
3) Each node accumulates scores they have received

4y Accumulated scores become RWR score of each
node

Minji Yoon (SNU) 8
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~~CPI: Cumulative Power Iteration

m X(i) € R™*1
m Interim score vector computed from ith iteration

m Have scores propagated across nodes at ith iteration as
entries
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More scores would be

propagated from Ato C DELETE (AG)

1 1
. EXA 9 EXA O

s RWR scores of nodes are determined by
arrangement of edges
1. When the graph G is updated with AG
2. Propagation of scores around AG is changed
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The changes are propagated Q * | @

(K X3) > (X x3) DELETE (AG)

,@

3. These small changes are propagated

4. Affect previous propagation pattern across whole
graph

5. Finally lead to r,.,, different from r,4
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OSP: Offset Score Propagation

(offset < (1 - C)(BT - AT)rold — (1 - C)(AA)Trold

xD e (1= ¢)BT) qoffset

Ioffset € Z X(Olﬂ)rset — Z((l - C)BT)lqoffset
1=0 1=0

Convergence: Lemma3.1
I'new < TIold T Toffset

Exactness: Theorem3.2

1. Calculate an offset seed vector q,(s.;

2. Propagate the offset scores across G+AG to get
an offset score vector rss..;

3. Finally, OSP adds up r,;q and rysrs.; to get .y,

Minji Yoon (SNU) 13



"* OSP-T: OSP with Trade-off

Algorithm 1: OSP and OSP-T Algorithm

Require: previous RWR score vector: rolq, row-normalized adjacency
matrix: A, update in A: AA, restart probability: c, error tolerance: €
Ensure: updated RWR score vector: rpey
1: set seed offset vector qogset = (1 — ¢)(AA) 'rq1q

: set Ioffset = 0 and X(O) = Yoffset

for iteration i = 1; ||x .

(_
compute X g

2
3
4
5: compute ryfset < Toffset + x(l)
6
7
8

offset
. end for
¢ Tnew € Iold + Toffset

: return rpew

s Approximate method for dynamic RWR
s Use the same algorithm with OSP

m Regulates accuracy and speed using
nigher error tolerance parameter €
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OSP-T: OSP with Trade-off

m Time complexity (Theorem 3.3)

THEOREM 3.3 (TiME ComPLEXITY OF OSP-T). With error tolerance
e, OSP-T takes O(m log(l_c)(g)) where m is the number of nonzeros

in A + AA.

m Error bound (Theorem 3.4)

THEOREM 3.4 (ERROR BOUND OF OSP-T). When OSP-T converges

under error tolerance €, error bound of RWR score vector tpe,, com-
puted by OSP-T is O(%).
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== OSP-T: OSP with Trade-off
Method Speed  Accuracy Coverage Accuracy Bound Time complexity model
TrackingPPR Fast Low Undirected graph No Only with insertion of edges
LazyForward Fast Low Undirected graph No Only with undirected graph
OSP Medium High Directed/Undirected graph  Yes General
OSP-T Faster =~ Medium Directed/Undirected graph Yes General

m Previous Methods: TrackingPPRI", LazyForward

o Fail to provide theoretical accuracy bound
2o Narrow down the scope of time complexity analysis

m  AG only with insertion of edges
s AG on undirected graphs.

[1] Naoto Ohsaka, Takanori Maehara, and Kenichi Kawarabayashi, Efficient PageRank tracking in evolving
networks, In Proceedings of the 21th ACM SIGKDD
[2] Hongyang Zhang, Peter Lofgren, and Ashish Goel, Approximate Personalized PageRank on Dynamic
Graphs, In Proceedings of the 22th ACM SIGKDD
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= Discussion: Fast Convergence
s OSP,0SP-T, and CPI

o Same upper bound O(m) for # visited edges / iteration

m |In practice, OSP and OSP-T visit only small
portion of edges: Unit Vector

Qoffset = (1 — C)(AA)TI'OId
”qoffset”l < (1-o0)] (AA)T|1

(i) Sparse Matrix with small update
l N T\
Xoffset ((1 = ¢)B ") qoffset

When B is multiplied with qg¢¢set in CPI,
only small number of edges in B would be visited

Small L1 length of q,¢se l€eads to small computation!!

Minji Yoon (SNU) 17



Discussion: Fast Convergence

ymodified CPI OSP OSP-T
edges #visited #visited #visited
#it . # it . #it L1

llqcpr Iy iter dges(x10°) lIqoffset Il1 iter 4 ges(x10°) l|Qoffset [l iter ges(x109) norm error

1 1 116 3,910, 864 | 2.60%x 1077 2 2,145 | 2.60%x 1077 1 25 2.84x 1078

10 1 116 3,910, 863 | 1.51x 1077 14 405,717 | 1.51x 1077 1 147 3.42 %1077

10 1 116 3,910, 858 | 2.19%x10°° 26 839, 137 | 2.19%107° 1 788 1.77 % 107°
10° 1 116 3,910, 808 | 2.31x107° 35 1,169, 546 | 2.31x107° 1 4, 098 1.64 X 107°
10 1 116 3,910, 300 | 2.30x 107% 47 1, 604, 965 | 2.30x 107 2 44, 960 1.11x 1074
10° 1 116 3,905, 224 | 2.05% 1073 61 2,104, 446 | 2.05%x 1073 4 130, 470 7.51% 1074

m # edges of LivedJournal dataset: 34,681,189

m OSP and OSP-T visit only small portion of
edges in the graph

o Converge much faster than CPI does
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Discussion: Effects of AG

m [wo factors in AG: theoretical analysis in Section 3.3

o How many nodes are modified?
o Which nodes are modified?

1. How many nodes are modified?

o Size of AG Gofiser = (1= ¢)(AA) "roiq
Larger size of AG (i) ~ T\
=> Denser AA X offset < ((1 B C)B )lqufset

=> Larger L1 Iength of Qoffset
=> Longer computation time for X ¢t ()

Minji Yoon (SNU) 19



Discussion: Effects of AG

2. Which nodes are modified?
o Location of AG => Location of nonzeros in AA(= B -

Joffset — (1 - C)(AA)Trold

o Nonzeros in AA with high RWR nodes in rg4
m Large qqfset = Running time skyrockets

o Nonzeros in AA with low RWR nodes in rg 4
. Small q ¢t => OSP-T converges quickly

A

)

no Real-world graphs follow power-law degree distribution

s Few nodes having high RWR scores

= Majority of nodes having low scores
Minji Yoon (SNU)
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Experimental Questions

m Q1. Performance of OSP
m Q2. Performance of OSP-T
m Q3. Effects of AG : size and location

Minji Yoon (SNU)
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Experimental Settings

s Machine: single workstation with 512GB memory
Datasets: large-scale real-world graph data

Error

Dataset Nodes Edges Direction tolerance
(OSP-T)

WikiLink! | 12,150,976 378,142,420 Directed 1072
Orkut? 3,072,441 117,185,083  Undirected 5% 1073
LiveJournal? 3,997,962 34,681,189 Undirected 5% 1073
Berkstan? 685,230 7,600,595 Directed 1074
DBLP? 317,080 1,049,866 ~ Undirected 1074
Slashdot? 82,144 549,202 Directed 1074

! http://konect.uni-koblenz.de/networks/
2 http://snap.stanford.edu/data/

Minji Yoon (SNU)
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= Q1. Performance of OSP

s How much does OSP improve performance for
dynamic RWR computation from baseline static
method CPI?

m Running time for tracking RWR exactly on a
dynamic graph G varying the size of AG
o Initial graph G with all its edges

o Modify G by deleting edges.
= 1 edges to 10° edges

Minji Yoon (SNU) 24
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& Q2. Performance of OSP-T

s How much does OSP-T enhance computation
efficiency, accuracy compared with its
competitors?

m Experimental setting

0 Generate a uniformly random edge stream and divide
the stream into two parts

o Extract 10 snapshots from the second part

o Initialize a graph with the first part of the stream
o Update the graph for each new snapshot arrival
o At the end of the updates, compare each algorithm.

Minji Yoon (SNU) 26



Q2. Performance of OSP-T

m [rade-off between accuracy and running time

(ggci';;) LazyForward TrackingPPR
/ASlashdot <{>Berkstan O Orkut XX WikiLink
100 BAG  RE LA o &
(@)
— _1 | G)
S 10 o |
- 80.6 A A XX
= c 0.4
e 2 O <
S 10 s o ¢
— 50.2' X\;
—'10'3.A O ® )
BEST ] ‘ ‘ ‘ ' ' ' ‘
10" 10° 10" 102 10% 10* ? 10" 10° 10' 102 10® 10%

Wall clock time (sec) Wall clock time (sec)

(a) Accuracy on L1 norm of error (b) Accuracy on Rank

Minji Yoon (SNU) 27



Q3. Effects of AG - Size

m How does size of AG affect the performance of
OSP-T?
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Q3. Effects of AG - Location

s Experimental setting

o Divide nodes evenly into 100 groups in the order of
RWR scores.

o Sample 10 nodes from each group.
o For each sampled node u, delete an edge (u, v)
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Conclusion

n OSP (Offset Score Propagation)
1. Calculate offset scores around the modified edges
2. Propagate the offset scores across the updated graph

5. Merge them with previous RWR scores to get updated
RWR scores

= Main Results
o Exactness of OSP
o Error bound and time complexity of OSP-T

o Faster and more accurate RWR computation than other
methods on Dynamic graphs
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Thank you !

Codes & datasets
http://datalab.snu.ac.kr/osp
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