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Background

• Graph Convolutional Networks (GCNs) becomes a powerful deep 
learning tool for representation learning of graph data 
• Adapting GCNs to large-scale real-world graphs brings up its 

scalability issue
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LinkedIn network



Scalability issue of GCNs

• Uncontrollable neighborhood expansion in the aggregation stage
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Scalability issue of GCNs

• When the average degree is 𝑑, 
𝐿-layer GCNs access 𝑑!neighbors per node on average
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Scalability issue of GCNs

• Uncontrollable neighborhood expansion in the aggregation stage
• High computation and memory footprints
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• Limit the neighborhood expansion by sampling a fixed number of 
neighbors in the aggregation operation
• Regulate the computation time and memory

Sampling is the Solution
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……Sample the neighbors



Current Sampling-based GCNs

• Random Sampling: GraphSage[8]

• Importance Sampling: FastGCN[4], LADIES[23], AS-GCN[10], GCN-BS[14]
• Approximate the original aggregation of the full neighborhood 
• Minimize the variance in sampling
• Sample neighbors helpful for variance reduction
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[*] references could be found in our original paperc



Current Sampling-based GCNs: limitations

• Low accuracy
• Sampling policy is agnostic to the performance
• Random or for variance reduction

• Vulnerability to noise or adversarial attacks 
• Sampling policies cannot distinguish relevant neighbors from irrelevant ones
• True neighbors from adversarially added fake neighbors
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What is the optimal sampling for GCNs?

• Back to the motivation of the aggregation operation
• In GCNs, each node aggregates its neighbors’ embeddings assuming 

that neighbors are informative for the target task
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What is the optimal sampling for GCNs?

• Unfortunately, real-world graphs are noisy
• Not every neighbors are informative for the target task 
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What is the optimal sampling for GCNs?

• Sample neighbors informative for the target task
• We aim for a sampler that maximizes the target task’s performance
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Overview

1. Motivation
2. Proposed Method
3. Theoretical Foundation
4. Experiments
5. Conclusion

13Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21



PASS: Performance-Adaptive Sampling Strategy for GCNs

GOAL: sample neighbors informative for the target task 
HOW: train a sampler that directly maximizes the GCN performance
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PASS: Performance-Adaptive Sampling Strategy for GCNs

GOAL: sample neighbors informative for the target task 
HOW: train a sampler that directly maximizes the GCN performance

We are going to introduce..
1. Learnable sampling policy function 
2. How to learn the parameters of the sampling policy
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Sampling policy

• Parameterized sampling policy 𝑞 " 𝑗 𝑖
• Estimates the probability of sampling node 𝑣! given node 𝑣" at the 𝑙-th layer 
• Importance sampling + Random sampling
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Sampling policy

• Parameterized sampling policy 𝑞 " 𝑗 𝑖
• Estimates the probability of sampling node 𝑣! given node 𝑣" at the 𝑙-th layer 
• Importance sampling + Random sampling
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• 𝑊& : Learnable transformation matrix
• ℎ"

% : Hidden embedding of node 𝑣" at the 𝑙-th layer  



Sampling policy

• Parameterized sampling policy 𝑞 " 𝑗 𝑖
• Estimates the probability of sampling node 𝑣! given node 𝑣" at the 𝑙-th layer. 
• Importance sampling + Random sampling
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• 𝑁(𝑖) : Degree of node 𝑣"



Sampling policy

• Parameterized sampling policy 𝑞 " 𝑗 𝑖
• Estimates the probability of sampling node 𝑣! given node 𝑣" at the 𝑙-th layer. 
• Importance sampling + Random sampling
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• 𝑎& : Learnable attention vector



Sampling policy

• Combination of importance and random sampling
• Case 1: a graph is noisy
• Importance sampling helps differentiate related and unrelated neighbors
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Job recommendation



Sampling policy

• Combination of importance and random sampling
• Case 2: a graph is well-clustered
• Nodes are connected with all informative neighbors.
• Randomness helps aggregate diverse neighbors and prevents the GCN from 

overfitting
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Job recommendation



Sampling policy

• Combination of importance and random sampling
• Generalize better across various graphs 
• Learn which sampling methodology is more effective
• Attention of sampling 𝑎&
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Sampling policy

• Parameter sharing
• Share the parameters (𝑊& , 𝑎& ) across all edges 
• Generalize and prevent the sampling policy from overfitting to the training set
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PASS: Performance-Adaptive Sampling Strategy for GCNs

GOAL: sample neighbors informative for the target task 
HOW: train a sampler that directly maximizes the GCN performance

We are going to introduce..
1. Learnable sampling policy function 
2. How to learn the parameters of the sampling policy
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Training the Sampling policy

STEP1: generate a computation graph using the sampling policy 
𝑞 " 𝑗 𝑖 in a top-down manner (𝑙: 𝐿 → 1)
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Training the Sampling policy

STEP2: after acquiring the computation graph, we do feedforward 
propagation in a bottom-up manner (𝑙: 1 → 𝐿)
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Training the Sampling policy

STEP3: in the backpropagation phase, we update parameters using 
gradients of the loss in a top-down manner (𝑙: 𝐿 → 1) 
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Training the Sampling policy

STEP3: In the backpropagation phase, we update parameters using 
gradients of the loss in a top-down manner (𝑙: 𝐿 → 1) 
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Update the parameters of 
both the GCN and sampling policy 

using gradients of the performance loss



Training the Sampling policy
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• When 𝜃 denotes parameters (𝑊3 , 𝑎3) in the sampling policy 𝑞4
" , the 

sampling operation is presented as:  

• 𝛼1 ! : Nonlinear unit + transformation matrix at 𝑙–th layer in GCNs



Training the Sampling policy
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• When 𝜃 denotes parameters (𝑊3 , 𝑎3) in the sampling policy 𝑞4
" , the 

sampling operation is presented as:  

• 𝛼1 ! : Nonlinear unit + transformation matrix at 𝑙–th layer in GCNs

How does 𝜵𝜽𝓛 pass through the non-differentiable sampling 
operation 𝔼𝒒𝜽𝒍

[%] to update our sampling policy 𝒒𝜽
𝒍 ?



Training the Sampling policy
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• Log derivative trick: widely used in reinforcement learning to compute 
gradients of stochastic policies 
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Training the Sampling policy

32

• Log derivative trick: widely used in reinforcement learning to compute 
gradients of stochastic policies 

• The gradients of GCN performance loss optimize the sampling policy 
directly for the GCN performance
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Overview
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4. Experiments
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Theoretical Foundation

• How does PASS learn whether a neighbor is informative for the target 
task from gradients of the performance loss?
• Why does PASS assign a certain sampling probability to the neighbor?
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Theoretical Foundation
• PASS decides a neighbor node 𝑣0 is informative when its embedding 
𝒉𝒋
𝒍 is aligned with the gradient −𝒅𝓛/𝒅𝒉𝒊

𝒍

• PASS increases a sampling probability of node 𝑣0 in proportion to the 
dot product of −𝒅𝓛/𝒅𝒉𝒊

𝒍 and its embedding 𝒉𝒋
𝒍
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Theoretical Foundation

• Node embeddings ℎ$
" is moved in the direction that minimizes the 

performance loss ℒ during back-propagation step
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Theoretical Foundation

• Node embeddings ℎ$
" is also moved by the aggregation operation
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Theoretical Foundation

• Aggregating with neighbors aligned with the gradient −∇ℒ helps the 
embedding ℎ$

" move in the direction that reduces the loss ℒ
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Theoretical Foundation

This analysis allows us to understand…
• Functionality of aggregation operations
• Move node embeddings to reduce the performance loss

• Joint optimization of the GCN and sampling policy
• GCNs reply only on its parameters to minimize the performance loss
• Both parameters are updated together towards the minimum loss
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Experimental Setting

• Semi-supervised node classification tasks 
• 7 public datasets and 2 LinkedIn datasets
• 3 citation networks: Cora, Citeseer, Pubmed
• 2 co-purchase graphs: Amazon Computers, Amazon Photo
• 2 co-authorship graphs: MS Computer Science, MS Physics
• 2 subsets of LinkedIn social networks 
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Experimental Setting

• Baselines
• Node-wise sampler: GraghSage, GCN-BS 
• Layer-wise sampler: FastGCN, AS-GCN 
• Attention method: GAT
• (PASS is a node-wise sampler)

• Unified time complexity bound
• With the batch size set to 64
• Layer-wise samplers sample 64 nodes per layer
• Node-wise samplers sample one neighbor per node, thus sampling 64 nodes 

per layer in total 
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Experimental Setting

• Evaluation with Sampling 
• Prohibitive time and memory costs from the full neighborhood expansion are 

also issues during testing
• Sample both during training and testing
• Significant drop in accuracy for certain baselines, especially layer-wise 

samplers
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Q1. Effectiveness
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• PASS shows the highest accuracy among all baselines across all datasets
• Layer-wise methods (FastGCN, AS-GCN) show lower accuracy than 

node-wise methods (GraphSage, GCN-BS, PASS)
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* Results on LinkedIn datasets are presented in percentage point (pp) w.r.t GraphSage



Q2. Robustness
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Two different noise scenarios 
1. Fake connections among existing nodes
• Connections made by mistake or unfit for purpose 
• e.g., Connections between family members in a job search platform
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Q2. Robustness
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Two different noise scenarios 
1. Fake connections among existing nodes
• Connections made by mistake or unfit for purpose 
• e.g., Connections between family members in a job search platform

2. Fake neighbors with random feature vectors
• Random connections to existing nodes
• e.g.. Fake accounts with random attributes used for fraudulent activities

For each node, we generate five true neighbors and five fake neighbors
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Q2. Robustness
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Q2. Robustness
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[Future work]

We can extend our sampler to detect fake page or fake account



Q3. Comparison with GATs

49

Motivation Proposed 
Method

Theoretical
Foundation

Experiments Conclusion

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21

• PASS (Ours)
• Sample all neighbors using their feature vectors 
• Generate a small computation graph before forward/backward propagation 

on GCNs

• GAT
• Hold the whole graph while training GCNs
• Matrix multiplications with large-sized adjacency matrices



Q3. Comparison with GATs
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• Batch size: 64
• Sampling number: 1
• Average degree: 15
• Number of layers: 3
• PASS (Ours)
• #nodes: 64 + 64 + 64 = 192
• Adjacency matrix: O(104)

• GAT
• #nodes: 64 + (64 * 15) + (64 * 15 * 15) = 15,424 
• Adjacency matrix: O(108)



Q3. Comparison with GATs

51

Motivation Proposed 
Method

Theoretical
Foundation

Experiments Conclusion

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21

• PASS is scalable across all datasets 
• GAT runs out of memory on 4 out of 7 datasets
• PASS-5 shows comparable or higher accuracy as GAT while maintaining 

shorter training and test times

* PASS (1)/(5) samples 1/5 neighbors per node, trading-off speed for accuracy 
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Conclusion

• Performance-adaptiveness
• PASS learns to sample neighbors informative for the task performance 

• Effectiveness
• PASS outperforms state-of-the-art samplers, being 10.4% more accurate

• Robustness
• PASS shows up to 53.1% higher accuracy in the presence of adversarial attacks

• Theoretical foundation
• PASS presents how it learns whether a neighbor is informative
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Thank you
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Appendix
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