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&—— Motivation ——— Proposed ——— Theoretical ———— Experiments =————— Conclusion =———e
Method Foundation

Background

* Graph Convolutional Networks (GCNs) becomes a powerful deep
learning tool for representation learning of graph data

* Adapting GCNs to large-scale real-world graphs brings up its

scalability issue %
i

&
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Proposed Theoretical
Method Foundation

Scalability issue of GCNs

Conclusion =———

&—— Motivation Experiments

* Uncontrollable neighborhood expansion in the aggregation stage
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Scalability issue of GCNs

&—— |Vlotivation

@
 When the average degree is d,
L-layer GCNs access d*neighbors per node on average
L & 4
dh &b &
L & 4
dh &b &
L & 4
ah &b &b &
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Scalability issue of GCNs

* Uncontrollable neighborhood expansion in the aggregation stage
* High computation and memory footprints
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Sampling is the Solution

@
* Limit the neighborhood expansion by sampling a fixed number/o
neighbors in the aggregation operation

* Regulate the computation time and memory A&
J e
/‘\‘
O O
dh &b 4
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Proposed Theoretical
Method Foundation

Current Sampling-based GCNs

Conclusion =———

&—— Motivation Experiments

* Random Sampling: GraphSage'®!
* Importance Sampling: FastGCN'4!, LADIESI?3], AS-GCNI10, GCN-BS!14]

* Approximate the original aggregation of the full neighborhood
* Minimize the variance in sampling
* Sample neighbors helpful for variance reduction

[*] references could be found in our original paperc
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Current Sampling-based GCNs: limitations

* Low accuracy
* Sampling policy is agnostic to the performance
 Random or for variance reduction

* Vulnerability to noise or adversarial attacks
* Sampling policies cannot distinguish relevant neighbors from irrelevant ones
* True neighbors from adversarially added fake neighbors
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What is the optimal sampling for GCNs?

* Back to the motivation of the aggregation operation

* In GCNs, each node aggregates its neighbors’ embeddings assuming
that neighbors are informative for the target task

Theo
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Method Foundation

What is the optimal sampling for GCNs?

e Unfortunately, real-world graphs are noisy
* Not every neighbors are informative for the target task
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Proposed Theoretical
Method Foundation

What is the optimal sampling for GCNs?

Conclusion =———

&—— Motivation Experiments

e Sample neighbors informative for the target task
* We aim for a sampler that maximizes the target task’s performance
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Overview

1. Motivation

2. Proposed Method

3. Theoretical Foundation
4. Experiments

5. Conclusion
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Proposed Theoretical
Method Foundation

PASS: Performance-Adaptive Sampling Strategy for GCNs

Conclusion =———

&—— [Motivation Experiments

GOAL: sample neighbors informative for the target task
HOW: train a sampler that directly maximizes the GCN performance
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Proposed Theoretical Conclusion —e

Method Foundation

PASS: Performance-Adaptive Sampling Strategy for GCNs

&—— [Motivation Experiments

GOAL: sample neighbors informative for the target task
HOW: train a sampler that directly maximizes the GCN performance

We are going to introduce..
1. Learnable sampling policy function
2. How to learn the parameters of the sampling policy
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Sampling policy

» Parameterized sampling policy ¢V (j|i)
* Estimates the probability of sampling node v; given node v; at the [-th layer
* Importance sampling + Random sampling
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Proposed Theoretical
Method Foundation

Sampling policy

Conclusion =———

&—— [Motivation Experiments

» Parameterized sampling policy ¢V (j|i)
* Estimates the probability of sampling node v; given node v; at the [-th layer
* Importance sampling + Random sampling

09,010 = (- ) ()

* W; : Learnable transformation matrix
. hl@ : Hidden embedding of node v; at the [-th layer
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Method Foundation

Sampling policy

Conclusion =———

&—— [Motivation Experiments

» Parameterized sampling policy ¢V (j|i)
* Estimates the probability of sampling node v; given node v; at the [-th layer.
* Importance sampling + Random sampling

L . l [
10 = - 4)- o)
O o1
qrand(jll) _m

 N(i) : Degree of node v;
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Proposed Theoretical
Method Foundation

Sampling policy

Conclusion =———

&—— [Motivation Experiments

» Parameterized sampling policy ¢V (j|i)
* Estimates the probability of sampling node v; given node v; at the [-th layer.
* Importance sampling + Random sampling

l [ l
qf,%p(m)—( 2") - (W - n)
(D) N
qrand(jll) _ N(i)

GOGID) = a5 (a5 G0, qiapa GID]
qOG1) = GO 7 IND GO ki)

* a,:Learnable attention vector
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Sampling policy

 Combination of importance and random sampling

e Case 1: a graph is noisy
* Importance sampling helps differentiate related and unrelated neighbors

o=
A~
4
R 4
Job recommendation %
o)
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Sampling policy

 Combination of importance and random sampling

e Case 2: a graph is well-clustered
* Nodes are connected with all informative neighbors.
 Randomness helps aggregate diverse neighbors and prevents the GCN from

overfitting %
{ <>}

() (g]

| {«>)

Job recommendation %
(<>}
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Sampling policy

 Combination of importance and random sampling
* Generalize better across various graphs

e Learn which sampling methodology is more effective
* Attention of sampling a,

GOGND) = a5 [0, G, qlang G1O]
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Sampling policy

* Parameter sharing
* Share the parameters (W; , as ) across all edges
* Generalize and prevent the sampling policy from overfitting to the training set
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Proposed Theoretical
Method Foundation

PASS: Performance-Adaptive Sampling Strategy for GCNs

Experiments

@ Motivation

GOAL: sample neighbors informative for the target task
HOW: train a sampler that directly maximizes the GCN performance

We are going to introduce..
1. Learnable sampling policy function
2. How to learn the parameters of the sampling policy
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Proposed Theoretical
Method Foundation

Training the Sampling policy

Conclusion =———

&—— [Motivation Experiments

STEP1: generate a computation graph using the sampling policy
g (jli) in a top-down manner (I: L = 1)

Sampling policy
P( [vy)

Sampling policy
P( [vy)

Sampling policy
P( |v3)
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Method Foundation

Training the Sampling policy

Conclusion =———

&—— [Motivation Experiments

STEP2: after acquiring the computation graph, we do feedforward
propagation in a bottom-up manner (l: 1 — L)

Performance loss £

Sampling policy
P( [vy)

GNN aaz/)

Sampling policy
P( |vs)

Sampling poli
A @
pa pa

GNNaf, || GNNaY

® @
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Training the Sampling policy

@ Motivation

STEP3: in the backpropagation phase, we update parameters using
gradients of the loss in a top-down manner (I: L — 1)

Gradient VL
Performance loss £ radien

Sampling policy Sampling policy
P( [vy) P( |vy)

GNN o GNN a)
Sampling policy Sampling policy Sampling policy Sampling policy
PClog) P(.[vy) @ PC [vy) @ @ P([v)
p p
GNN ag) GNN ag;) GNN ag) GNN ag)

® @ W » @ o
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Method Foundation

Training the Sampling policy

@ Motivation

Experiments

STEP3: In the backpropagation phase, we update parameters using
gradients of the loss in a top-down manner (I: L — 1)

Update the parameters of
both the GCN and sampling policy
using gradients of the performance loss

Gradient VL

Conclusion ——

Sampling policy
P( |vy)

GNN agtz,)

Sampling policy
P(:[vy) &

Sampling policy
P( [vg)

GNNa? |[ GNN o

@ @ &
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Proposed Theoretical
Method Foundation

Training the Sampling policy

Conclusion =———

Experiments

* When 6 denotes parameters (W, a,) in the sampling policy q( ) the
sampling operation is presented as:

(I+1) _ (1) -0 ... | —
h ay, @ ([Ej q(l)(]|l) [h D,l =0,---,L—1

a,,@ : Nonlinear unit + transformation matrix at [-th layer in GCNs
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Method Foundation

Training the Sampling policy

Conclusion ——

&—— [Motivation Experiments

* When 6 denotes parameters (W, a,) in the sampling policy qg), the
sampling operation is presented as:

h(l+1)

(z)( [h(l)]),l =0,-,L—1

NOR Nonlinear unit + transformation matrix at [—th layer in GCNs

How does V4L pass through the non-differentiable sampling
operation IEq(z)[ | to update our sampling policy qe)?
[7)
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Training the Sampling policy

@ Motivation

THEOREM 4.1. Given the loss L and the hidden embedding hgl) of
node v; at the l-th layer, the gradient of L w.r.t. the parameter 0 of

the sampling policy q(el)(i i) is computed as follows:

d.L

VoL =
(I+1)
an{*

B v (Do s )
(04 ’l .

* Log derivative trick: widely used in reinforcement learning to compute
gradients of stochastic policies
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Conclusion =———

Proposed Theoretical Experiments

Method Foundation

Training the Sampling policy

@ Motivation

THEOREM 4.1. Given the loss L and the hidden embedding hg.l) of
node v; at the l-th layer, the gradient of L w.r.t. the parameter 0 of

the sampling policy qg)(i i) is computed as follows:

dL
(I+1)
an{*

PRI ()
Vo L = \ )
oL aW(l)Ej~qg)(i|i)[ ologq, (I|l)hj |

* Log derivative trick: widely used in reinforcement learning to compute

gradients of stochastic policies
* The gradients of GCN performance loss optimize the sampling policy

directly for the GCN performance
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Overview

1. Motivation

2. Proposed Method

3. Theoretical Foundation
4. Experiments

5. Conclusion
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Proposed Theoretical
Method Foundation

Conclusion =———

&—— Motivation Experiments

Theoretical Foundation

* How does PASS learn whether a neighbor is informative for the target
task from gradients of the performance loss?

 Why does PASS assign a certain sampling probability to the neighbor?
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Method Foundation

Theoretical Foundation

Conclusion =———

&—— [Motivation Experiments

* PASS decides a neighbor node v; is informative when its embedding

hw is aligned with the gradient —d L/ dh@
. PASS increases a sampling probability of node v; in proportion to the
dot product of —d L/ dh( ) and its embedding h( )

THEOREM 5.1. Given a source node v; and its neighbor node vj,
PASS increases a sampling probability ¢\P)(j|i) in proportion to the
dot product of —d L/ dhg.l) and hg.l).
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Theoretical Foundation

* Node embeddings hl@ is moved in the direction that minimizes the
performance loss L during back-propagation step

— dL Of The direction in which hg) should move
dhg) < to decrease the performance loss £

— hgl)[The current embedding of v, ]
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Theoretical Foundation

* Node embeddings hl@ is also moved by the aggregation operation

) — dl Of The direction in which A’ should move
dh;l) < to decrease the performance loss £

Qode v,'s neighborhow

hgl) [The current embedding of v, ]

0\
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Theoretical Foundation

Conclusion

* Aggregating with neighbors alighed with the gradient —V.L helps the

embedding hl@ move in the direction that reduces the loss L

i ) _ dL / The direction in which A" should move
o (@ y
d hz < to decrease the performance loss £
S0
Qode v,'s neighborhoy h3 l‘

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21

D D
& h,’' +h
> 4 2 3 _

"’hg) The current embedding of v,

N

A
O] )
olie 3o




—— Motivation = Proposed e Theoretical ———— Experiments = Conclusion =———e
Method Foundation

Theoretical Foundation

This analysis allows us to understand...

* Functionality of aggregation operations
* Move node embeddings to reduce the performance loss

e Joint optimization of the GCN and sampling policy
* GCNs reply only on its parameters to minimize the performance loss
* Both parameters are updated together towards the minimum loss
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Overview

1. Motivation

2. Proposed Method

3. Theoretical Foundation
4. Experiments

5. Conclusion

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21

40



&—— |otivation = Proposed e Theoretical ———— Experiments = Conclusion =—e
Method Foundation

Experimental Setting

* Semi-supervised node classification tasks

* 7 public datasets and 2 LinkedIn datasets
e 3 citation networks: Cora, Citeseer, Pubmed
e 2 co-purchase graphs: Amazon Computers, Amazon Photo
e 2 co-authorship graphs: MS Computer Science, MS Physics
e 2 subsets of LinkedIn social networks

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21 41
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Method Foundation

Experimental Setting

Conclusion =———

&—— [Motivation Experiments

* Baselines
* Node-wise sampler: GraghSage, GCN-BS
* Layer-wise sampler: FastGCN, AS-GCN
e Attention method: GAT
e (PASS is a node-wise sampler)

* Unified time complexity bound
* With the batch size set to 64
* Layer-wise samplers sample 64 nodes per layer

* Node-wise samplers sample one neighbor per node, thus sampling 64 nodes
per layer in total

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21 42
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Experimental Setting

* Evaluation with Sampling

* Prohibitive time and memory costs from the full neighborhood expansion are
also issues during testing

* Sample both during training and testing

* Significant drop in accuracy for certain baselines, especially layer-wise
samplers

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21 43
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Q1. Effectiveness

Proposed

Method

Theoretical
Foundation

Experiments

Conclusion =———

Method Cora Citeseer Pubmed AmazonC AmazonP MsCS MsPhysics | LnkIndustry LnkTitle
FastGCN 0.582 0.496 0.569 0.480 0.542 0.520 0.638 -4.2pp -2.0pp
AS-GCN 0.462 0.387 0.502 0.419 0.430 0.403 0.516 -7.1pp -0.6pp
GraphSage | 0.788 0.698 0.792 0.707 0.787 0.766 0.875 0.0pp 0.0pp
GCN-BS 0.788  0.693 0.809 0.736 0.800 0.780 0.887 1.8pp 0.7pp
PASS 0.821 0.715 0.858 0.757 0.855 0.884 0.934 10.2pp 1.3pp

* Results on LinkedIn datasets are presented in percentage point (pp) w.r.t GraphSage

* PASS shows the highest accuracy among all baselines across all datasets

 Layer-wise methods (FastGCN, AS-GCN) show lower accuracy than
node-wise methods (GraphSage, GCN-BS, PASS)

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21 44
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Q2. Robustness (Q) oty
) "\

()
0)6@/‘
Two different noise scenarios )

1. Fake connections among existing nodes
e Connections made by mistake or unfit for purpose
* e.g., Connections between family members in a job search platform

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21 45
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Q2. Robustness S (Q]”";f"“/
()

D
«° e
g‘ / /))6@’%
Two different noise scenarios )

1. Fake connections among existing nodes
e Connections made by mistake or unfit for purpose
* e.g., Connections between family members in a job search platform

2. Fake neighbors with random feature vectors
 Random connections to existing nodes
e e.g.. Fake accounts with random attributes used for fraudulent activities

For each node, we generate five true neighbors and five fake neighbors

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21 46
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Q2. Robustness

Fake connections among existing nodes

6‘% Method Cora Citeseer Pubmed AmazonC AmazonP MsCS
/%/);/-Z@’Sf‘/ FastGCN 0.293 0.254 0.416 0.300 0.307 0.292

n W AS-GCN 0.229 0.171 0.334 0.206 0.167 0.176
6@,‘ GraphSage | 0.312 0.261 0.439 0.376 0.306 0.262

GCN-BS 0.320 0.265 0.457 0.387 0.305 0.264

@ PASS 0.658 0.603 0.811 0.669 0.698 0.822

Fake neighbors with random feature vectors

Method Cora Citeseer Pubmed AmazonC AmazonP MsCS
FastGCN 0.597 0.513 0.614 0.502 0.566 0.563
AS-GCN 0.233 0.152 0.379 0.271 0.169 0.252
GraphSage 0.282 0.269 0.459 0.264 0.264 0.248
GCN-BS 0.571 0.493 0.681 0.639 0.686 0.622
PASS 0.722 0.681 0.761 0.672 0.783 0.667
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Q2. Robustness

Fake connections among existing nodes
8 Method Cora Citeseer Pubmed AmazonC AmazonP

c
(g] /%/;)Z)Gé‘/ FastGCN 0.293 0.254 0.416
m W AS-GCN 0.229 0.171 0.334
6@, GraphSage | 0.312
GCN-BS 0.320

0.300

Pubmed AmazonC AmazonP MsCS

0.513 0.614 0.502 0.566 0.563
0.152 0.379 0.271 0.169 0.252

GraphSage | 0.282 0.269 0.459 0.264 0.264 0.248
GCN-BS 0.571 0.493 0.681 0.639 0.686 0.622
PASS 0.722 0.681 0.761 0.672 0.783 0.667
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Q3. Comparison with GATs

Sampling policy
P( |vy)

Sampling policy
P( [vy)

Sampling policy
P( [v3)

* PASS (Ours)

* Sample all neighbors using their feature vectors

* Generate a small computation graph before forward/backward propagation
on GCNs

* GAT

* Hold the whole graph while training GCNs
* Matrix multiplications with large-sized adjacency matrices

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21 49
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Q3. Comparison with GATs

Conclusion =———

&—— [Motivation Experiments

* Batch size: 64
* Sampling number: 1
* Average degree: 15

* Number of layers: 3

* PASS (Ours)
e #nodes: 64 + 64 + 64 = 192
* Adjacency matrix: O(10%)

* GAT
e #nodes: 64 + (64 * 15) + (64 * 15 * 15) = 15,424
* Adjacency matrix: O(108)

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21 50



&—— \Motivation = Proposed ———— Theoretical —————— Experiments =———— Conclusion ——e

Method Foundation
[ ] ] h
Q3. Comparison with GATs
Accuracy Training time (s) Test time (s)
Dataset GATs PASS(1) PASS(5) GATs PASS(1) PASS(5) | GATs PASS(1) PASS(5)
Cora 0.850 0.821 0.847 189.670 9.459 7.226 0.122 0.022 0.033
Citeseer 0.744 0.715 0.735 404.904 13.962 13.225 0.175 0.043 0.069
Pubmed - 0.858 0.871 - 87.660 94.918 = 0.612 1.510
AmazonC - 0.757 0.886 - 52.060 184.522 - 0.256 1.218
AmazonP 0.905 0.855 0.944 | 1869.690 30.060 68.134 0.709 0.094 0.338
MS CS - 0.884 0.918 - 101.840 142.099 - 0.811 3.113
MS Physics - 0.934 0.952 - 439.378 507.816 = 4.162 8.445

* PASS (1)/(5) samples 1/5 neighbors per node, trading-off speed for accuracy

* PASS is scalable across all datasets
* GAT runs out of memory on 4 out of 7 datasets

* PASS-5 shows comparable or higher accuracy as GAT while maintaining
shorter training and test times
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Conclusion

* Performance-adaptiveness
* PASS learns to sample neighbors informative for the task performance

* Effectiveness
* PASS outperforms state-of-the-art samplers, being 10.4% more accurate

* Robustness
* PASS shows up to 53.1% higher accuracy in the presence of adversarial attacks

* Theoretical foundation
e PASS presents how it learns whether a neighbor is informative

Yoon et al., Performance-Adaptive Sampling Strategy towards Fast and Accurate Graph Neural Networks, KDD'21 53
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Appendix
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