

TPA: Fast, Scalable, and Accurate Method for Approximate Random Walk with Restart on Billion Scale Graphs

Minji Yoon, Jinhong Jung, and U Kang Data Mining Lab Dept. of CSE Seoul National University

Outline

Problem Definition

- Proposed Method
- Experiments
- Conclusion

Motivation

- Measuring similarity score between two nodes in a graph
 - Various applications across different domains
 - Ranking, Community detection, Link prediction, and Anomaly Detection.
 - Random Walk with Restart (RWR)
 - Consider the global network from a particular user's point of view

Random Walk with Restart

- A random surfer
 - Start at seed node
 - Walk along edges with probability (1 c)
 - $\hfill\square$ Jump back to the seed node with probability c

Challenges

- A significant challenge on its computation
 - RWR scores are different across different seed nodes
 - Need to be recomputed for each new seed node
- Approximate RWR computation

Problem Definition : Approximate RWR

- **Given:** adjacency matrix **A**, seed node s, restart probability *c*
- Find: approximate RWR score vector r_{approx} of exact RWR score vector r_{exact} which satisfying:

$$\mathbf{r}_{\text{exact}} = (1 - c) \widetilde{\mathbf{A}}^{\mathrm{T}} \mathbf{r}_{\text{exact}} + c \boldsymbol{q}_{\mathrm{s}}$$

Input:

- □ $\widetilde{\mathbf{A}} \in \mathbb{R}^{n \times n}$: row-normalized adjacency matrix
- □ $\mathbf{q}_s \in \mathbb{R}^{n \times 1}$: seed vector (*s*-th unit vector)
- □ $c \in \mathbb{R}$: restart probability
- Output:
 - □ $\mathbf{r}_{approx} \in \mathbb{R}^{n \times 1}$: approximate RWR score vector

CPI: Cumulative Power Iteration

- Exact RWR computation method
- Re-interpretation of RWR
- Propagation of scores across a graph
 - 1) Score c is generated from the seed node
 - 2) At each step, scores are divided evenly into outedges with decaying coefficient (1 - c)
 - 3) Each node accumulates scores they have received
 - Accumulated scores become RWR score of each node

CPI: Cumulative Power Iteration

- $\mathbf{x}(i) \in \mathbb{R}^{n \times 1}$: interim score vector computed from *i* th iteration
- Correctness of CPI: Theorem 1
- For PageRank computation, the seed vector \mathbf{q} is set to $\frac{1}{n}\mathbf{1}$

Outline

Problem Definition

Proposed Method

- Experiments
- Conclusion

TPA: Two Phase Approximation

- TPA approximates RWR scores with fast speed and high accuracy
 - CPI performs iterations until convergence
 - Divide the whole iterations in CPI into three parts as follows :
 - \mathbf{r}_{CPI}

S : starting iteration of $r_{neighbor}$, T : starting iteration of $r_{stranger}$

TPA: Two Phase Approximation

\mathbf{r}_{CPI}

 $\mathbf{r}_{\text{TPA}} = \mathbf{r}_{\text{family}} + \mathbf{\tilde{r}}_{\text{neighbor}} + \mathbf{\tilde{r}}_{\text{stranger}}$

- 1st Phase: Stranger Approximation
 - Approximates $r_{stranger}$ in RWR using PageRank
- 2nd Phase: Neighbor Approximation
 - Approximates $r_{neighbor}$ using r_{family}

Stranger Approximation - Definition

PageRank score vector p_{CPI} is represented by CPI as follows:

$$\mathbf{x}^{\prime(0)} = \frac{c}{n} \mathbf{1} \quad \mathbf{x}^{\prime(i)} = (1-c) \mathbf{\tilde{A}}^{\top} \mathbf{x}^{\prime(i-1)}$$

 \mathbf{p}_{CPI}

$$= \mathbf{p}_{\text{family}} + \mathbf{p}_{\text{neighbor}} + \mathbf{p}_{\text{stranger}}$$

= $\mathbf{x}^{\prime(0)} + \cdots + \mathbf{x}^{\prime(S-1)} + \mathbf{x}^{\prime(S)} + \cdots + \mathbf{x}^{\prime(T-1)} + \mathbf{x}^{\prime(T)} + \cdots$
family part neighbor part stranger part

 r_{stranger} in RWR is approximated by p_{stranger} in PageRank as follows:

 $\tilde{\mathbf{r}}_{stranger} = \mathbf{p}_{stranger}$

Stranger Approximation - Intuition

- The amount of scores propagated into each node
- 1. # of in-edges
 - Nodes with many in-edges have many sources to receive scores
- 2. Distance from seed node
 - Scores are decayed by factor (1-c) as iteration progresses
 - Nodes close to the seed node take in high scores

- In stranger iterations
 - Scores (x(T), x(T + 1), ···) are mainly determined by # in-edges
 - Nodes are already far from seed
- PageRank is solely determined by arrangement of edges (= # in-edges) !!
 - Motivation of Stranger Approximation
 - Estimate stranger iterations in RWR with those in PageRank
- Precompute $\tilde{r}_{stranger}$ in preprocessing phase

TPA: Two Phase Approximation

\mathbf{r}_{CPI}

 $\mathbf{r}_{\text{TPA}} = \mathbf{r}_{\text{family}} + \mathbf{\tilde{r}}_{\text{neighbor}} + \mathbf{\tilde{r}}_{\text{stranger}}$

1st Phase: Stranger Approximation
Approximates r_{stranger} in RWR using PageRank
2nd Phase: Neighbor Approximation
Approximates r_{neighbor} using r_{family}

Minji Yoon (SNU)

Neighbor Approximation - Definition

- The neighbor approximation
 - **Limit computation to** r_{family}
 - Estimate $r_{neighbor}$ by scaling r_{family} as follows:

$$\tilde{\mathbf{r}}_{\text{neighbor}} = \frac{\|\mathbf{r}_{\text{neighbor}}\|_1}{\|\mathbf{r}_{\text{family}}\|_1} \mathbf{r}_{\text{family}} = \frac{(1-c)^S - (1-c)^T}{1 - (1-c)^S} \mathbf{r}_{\text{family}}$$

L1 length of r_{family} and $r_{neighbor}$ is proved in Lemma2

Neighbor Approximation - Intuition

Block-wise, Community-like structure of real-world graphs^[1]

[1] U. Kang and C. Faloutsos. Beyond 'caveman communities': Hubs and spokes for graph compression and mining. In *ICDM*, 2011

Minji Yoon (SNU)

Neighbor Approximation - Intuition

- Nodes which receive scores in the early iterations (family part)
 - Would receive scores again in the following iterations (neighbor part)
- Nodes which have more in-edges thus receive more scores in the early iterations
 - Would receive more scores than other nodes in the following iterations. Minii Yoon (SNU)

Neighbor Approximation - Intuition

- Maintain ratios of scores among nodes
- Scale the scores in r_{family} to reflect smaller amount of scores in r_{neighbor}
 - Scores in the following iterations would be smaller than previous scores
 - Decaying coefficient (1 c)

$$\tilde{\mathbf{r}}_{\text{neighbor}} = \frac{\|\mathbf{r}_{\text{neighbor}}\|_{1}}{\|\mathbf{r}_{\text{family}}\|_{1}} \mathbf{r}_{\text{family}}$$

TPA: Two Phase Approximation

Exact RWR: $\mathbf{r}_{CPI} = \mathbf{r}_{family} + \mathbf{r}_{neighbor} + \mathbf{r}_{stranger}$

Selecting S and T

 \mathbf{r}_{CPI}

- The starting iteration S of the neighbor approximation
 - Accuracy and Speed
 - with large S, running time increases: computation for r_{family}
 - with small S, error increases : a portion of exact computation decreases

Selecting S and T

 \mathbf{r}_{CPI}

- The starting iteration T of the stranger approximation
 - Accuracy
 - with small T, error(Stranger Approximation) increase
 - Effect of PageRank > Effect of seed node.
 - with large T, error(Neighbor Approximation) increase
 - Assumption of Neighbor Approximation

Outline

Problem Definition Proposed Method Experiments Conclusion

Experimental Questions

Q1. Performance

How much does TPA enhance the computational efficiency compared with its competitors?

Q2. Accuracy

How much does TPA sacrifice accuracy?

Q3. Effects of parameters

- How does S affect the accuracy and speed of TPA?
- How does T affect the accuracy of TPA?

Experimental Settings

- Machine: single workstation with 200GB memory
- Datasets: large-scale real-world graph data

Dataset	Nodes	Edges	S	T
Friendster ¹	68,349,466	2,586,147,869	4	20
Twitter ¹	41,652,230	1,468,365,182	4	6
WikiLink ¹	12,150,976	378,142,420	5	6
LiveJournal ¹	4,847,571	68,475,391	5	10
Pokec ¹	1,632,803	30,622,564	5	10
Google ¹	875,713	5,105,039	5	20
Slashdot ¹	82,144	549,202	5	15

¹ http://konect.uni-koblenz.de/

Q1. Performance of TPA: Speed

How long does TPA take for preprocessing phase and online phase, respectively?

Q1. Performance of TPA: Memory Usage

How much memory space does TPA requires for preprocessed results?

Q2. Accuracy of TPA

Recall of Top-k RWR nodes

Twitter's "Who to Follow": top-500 ranked users
How much does TPA sacrifice its accuracy?

Q3. Effects of Parameters - S

How does the starting iteration S of Neighbor Approximation affect the accuracy and speed of TPA?

(a) Online time vs. L1 norm of error(b) Online time vs. L1 norm of erroron the LiveJournal dataseton the Pokec dataset

Q3. Effects of Parameters - T

How does the starting iteration T of Stranger Approximation affect the accuracy of TPA?

(a) L1 norm of error on the LiveJournal dataset

(b) L1 norm of error on the Pokec dataset

Outline

Problem Definition

- Proposed Method
- Experiments

Conclusion

Conclusion

- TPA (Two Phase Approximation)
 - Neighbor Approximation
 - block-wise structure of real-world graphs
 - Stranger Approximation
 - PageRank

Main Results

- Requires 40x less memory space & preprocesses 3.5x faster than other preprocessing methods
- Computes RWR 30x faster than other existing methods in online phase
- Maintaining high accuracy

Thank you !

Codes & datasets http://datalab.snu.ac.kr/tpa

Minji Yoon (SNU)